Methodology for Measuring Volume Fractions of Gases Using Gas Chromatography in Medical Nitrous Oxide: Features of Assessing Metrological Characteristics
https://doi.org/10.20915/2077-1177-2023-19-5-95-112
Abstract
An analysis by the Federal Information Fund revealed the lack of methods for measuring the volume fractions of nitrous oxide, carbon oxide and dioxide, oxygen, nitrogen, and non-condensable gases in medical nitrous oxide using portable devices. Nitrous oxide is widely used in medicine, and therefore this research was committed to the development and certification of a method for measuring volume fractions of nitrous oxide, carbon oxide and dioxide, oxygen, nitrogen, and non-condensable gases using gas chromatography in medical nitrous oxide. Certification of the measurement method in accordance with legal requirements in the field of ensuring the uniformity of measurements was carried out by organizing a quasi-interlaboratory experiment; the following approaches were used to obtain the measurement result: the method for constructing a calibration dependence, the external standard method, and the calculation method. In addition, the study presents an algorithm and results for calculating the uncertainty of measurements of volume fractions of gases, subject to the provisions of EURACHEM CITAC, as well methodologically influencing factors that were assessed using a multifactorial experiment and its processing by regression analysis.
Keywords
About the Authors
M. P. KrashenininaRussian Federation
Maria P. Krasheninina, Cand. Sci. (Eng.), Assistant Scientific Custodian of the GET 173, Scientific Custodian of the GVET 208–1, Researcher
Laboratory for Metrological Support of Moisture Measurement and Reference Materials
620075
4 Krasnoarmeyskaya st.
Yekaterinburg
Researcher ID B-8302–2019
E. V. Galeeva
Russian Federation
Ekaterina V. Galeeva, Head of the Group
Group of Raman Spectroscopy and Perspective Developments
109012
4, bld. 1, Slavyanskaya Square
Moscow
Yaroslavl
I. A. Fomina
Russian Federation
Irina A. Fomina, Leading Specialist
Group of Raman Spectroscopy and Perspective Developments
109012
4, bld. 1, Slavyanskaya Square
Moscow
I. R. Arslanov
Russian Federation
Ilshat R. Arslanov, Leading Specialist
Group of Raman Spectroscopy and Perspective Developments
109012
4, bld. 1, Slavyanskaya Square
Moscow
O. S. Golynets
Russian Federation
Olga S. Golynets, Scientific Custodian of the GVET 176–1, Acting Head of the Laboratory
Laboratory for Metrological Support of Moisture Measurement and Reference Materials
620075
4 Krasnoarmeyskaya St.
Yekaterinburg
Researcher ID ABD-7662–2021
D. V. Somov
Russian Federation
Dmitriy V. Somov, Cand. Sci. (Pharm.), Acting General Director
Moscow
R. R. Galeev
Russian Federation
Roman R. Galeev, Director
Moscow
Yaroslavl
A. L. Khohlov
Russian Federation
Alexandr L. Khohlov, Professor, RAS Academician, Dr. Sci. (Med.), Rector, Head of the Department
Department of Pharmacology and Clinical Pharmacology
Yaroslavl
References
1. Klitgaard T. L., Schjørring O. L., Nielsen F. M., Meyhoff C. S., Perner A., Wetterslev J. et al. Higher versus lower fractions of inspired oxygen or targets of arterial oxygenation for adults admitted to the intensive care unit. Cochrane Database of Systematic Reviews. 2023;(9): CD012631. doi: 10.1002/14651858.CD012631.pub3
2. Becker D. E., Rosenberg M. Nitrous oxide and the inhalation anesthetics. Anesth Prog. 2008;55(4):124–130. doi: 10.2344/0003–3006–55.4.124
3. Sun R., Jia W. Q., Zhang P., Yang K., Tian J. H., Ma B. et al. Nitrous oxide-based techniques versus nitrous oxide-free techniques for general anaesthesia. Cochrane Database of Systematic Reviews. 2015;(11):117–123. doi: 10.1002/14651858.CD008984.pub2
4. Glinka N. L. General chemistry : textbook. Leningrad: Khimiya; 1983. 704 p. (In Russ.).
5. Borisov D. B., Dunts P. V., Zabolotskikh I. B. et al. Is there a place for nitrous oxide in modern anesthesiology? Journal of Anesthesiology and Reanimatology. 2018;63(2):96–102. (In Russ.). URL: https://cyberleninka.ru/article/n/est-li-mesto-zakisi-azota-v-sovremennoy-anesteziologii#:~:text=%D0%97%D0%B0%D0%BA%D0%B8%D1%81%D1%8C%20%D0%B0%D0%B7%D0%BE%D1%82%D0%B0%20%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D1%83%D0%B5%D1%82%D1%81%D1%8F%20%D0%B2%2060,%D0%BE%D1%82%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B0%D0%BD%D0%BD%D1%8B%D1%85%20%D0%B3%D0%B0%D0%B7%D0%BE%D0%B2%20%D0%B2%2062%25%20%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B5%D0%B2.
6. Sood R., Parent T. Peripheral polyneuropathy and acute psychosis from chronic nitrous oxide poisoning : A case report with literature review. Medicine (Baltimore). 2022;101(3):e28611. doi: 10.1097/MD.0000000000028611
7. Ferrer M., Pelosi P. European respiratory monograph: Clinical handsbook for respiratory professional. UK: Printed by Latimer Trend & Co. Ltd; 2012. 248 p.
8. Miroshnichenko Yu. V., Shchegolev A. V., Enikeeva R. A., Grachev I. N. Identification of the nomenclature of gases for medical use and justification of proposals for regulating their circulation. Military Medical Journal. 2018;339(12):46–54. (In Russ.).
9. Sakanyn E. I., Miroshnichenko Yu. V., Enikeeva R. A., Bicheneva K. A., Perfiliev A. B., Kassu E. M. Approach to unification requirements of national and international general monographs which present quality of medical gases. Bulletin of the Russian Military Medical Academy. 2015:(3):162–165. (In Russ.).
10. Lutseva A. I., Bokovikova T. N., Yashkir V. A. Methodological approaches to the choice of identification test methods for medicines. The bulletin of the scientific centre for expert evaluation of medicinal products. Regulatory research and medicine evaluation. 2017;7(2):71–76. (In Russ.).
11. Salamonsen L. A., Cole W. J., Salamonsen R. F. Simultaneous trace analysis of nitrous oxide and halothane in air. British Journal of Anaesthesia. 1978;50(3):221–227. doi: 10.1093/bja/50.3.221
12. Sitarek K., Wesołowski W., Kucharska M., Celichowski G. Concentrations of anaesthetic gases in hospital operating theatres. International Journal of Occupational Medicine and Environmental Health. 2000;13(1):61–66.
13. Somov D. V., Galeeva E. V., Falaleeva T. S. Modern approach to the organization of quality control of medical oxygen. Vestnik Roszdravnadzora. 2021;(4):38–45. (In Russ.).
14. Sulaberidze V. Sh., Neklyudova A. A. Harmonization of international and national forms of confirmation of conformity of measurement techniques. Transactions TSTU. 2022;28(4):587–595. (In Russ.). doi: 10.17277/vestnik.2022.04.pp.586–595
15. EURACHEM / CITAC Guide CG 4. Quantifying uncertainty in analytical measurement. (In Russ.). Available at: https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1_RU.pdf
16. Medvedevskikh M. Yu., Krasheninina M. P., Sergeeva A. S., Baranovskaya V. B. Validation of analytical methods: case study. Industrial laboratory. Diagnostics of materials. 2020;86(8):72–79. (In Russ.) doi: 10.26896/1028-6861-2020-86-8-72-79
17. Hibbert D. B. The uncertainty of a result from a linear calibration. The Analyst. 2006;131(12):1273–1278. doi: 10.1039/b615398d
18. Doerffel K. Statistik in der analytischen chemie (Russ. ed.: L. N. Statistika v analiticheskoi khimii. Moscow: Mir, 1994. 268 p.). (In Russ.).
19. ГОСТ 8.563-2009 Государственная система обеспечения единства измерений. Методики (методы) измерений = State system for ensuring the uniformity of measurements. Procedures of measurements. М.: Стандартинформ, 2019. 16 с.
20. ГОСТ ISO/IEC17025–2019 Общие требования к компетентности испытательных и калибровочных лабораторий = General requirements for the competence of testing and calibration laboratories. М.: Стандартинформ, 2021. 28 с.
21. ГОСТ Р 5725-2-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений = Accuracy (trueness and precision) of measurement methods and results. Part 2. Basic method for the determination of repeatability and reproducibility of a standard measurement method. М.: Издательство стандартов, 2002. 44 с.
22. ГОСТ 34100.3–2017 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения = Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. М.: Стандартинформ, 2018. 108 с.
23. ГСО 10532–2014 Стандартный образец состава искусственной газовой смеси на основе инертных и постоянных газов (ИП-М-2) // Федеральный информационный фонд по обеспечению единства измерений [сайт]. URL: https://fgis.gost.ru/fundmetrology/registry/19/items/389650 (дата обращения: 08. 08. 2022).
24. Об обеспечении единства измерений: Федер. закон Рос. Федерации от 26 июня 2008 г. № 102-ФЗ: принят Гос. Думой Федер. Собрания Рос. Федерации 11 июня 2008 г.: одобрен Советом Федерации Федер. Собр. Рос. Федерации 18 июня 2008 г. (в ред. от 11. 06. 2021 № 170-ФЗ) // КонсультантПлюс [сайт]. URL: https://www.consultant.ru/document/cons_doc_LAW_77904/ (дата обращения: 08. 08. 2022).
25. Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений: постановление Правительства Российской Федерации от 16 ноября 2020 г. № 1847 // Официальный интернет-портал правовой информации [сайт]. URL: http://publication.pravo.gov.ru/document/0001202011230047 (дата обращения: 08. 08. 2022).
26. ОФС.1.1.0012.15 Валидация аналитических методик: Государственная фармакопея Российской Федерации XIV издание // Фармакопея.рф [сайт]. URL: https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-15/1/1-1/validatsiya-analiticheskikh-metodik/ (дата обращения: 08. 08. 2022).
27. ОФС.1.2.1.2.0001.15 Хроматография: Государственная фармакопея Российской Федерации XIV издание // Фармакопея.рф [сайт]. URL: https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-14/1/1-2/1-2-1/1-2-1-2/khromatografiya/ (дата обращения: 08. 08. 2022).
28. ОФС.1.2.1.2.0004.15 Газовая хроматография: Государственная фармакопея Российской Федерации XIV издание // Фармакопея.рф [сайт]. URL: https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-13/1/1-2/1-2-1/1-2-1-2/gazovaya-khromatografiya/ (дата обращения: 08. 08. 2022).
29. ОФС.1.4.1.0023.18 Газы медицинские: Государственная фармакопея Российской Федерации XIV издание // Институт фармакопеи и стандартизации в сфере обращения лекарственных средств [сайт]. URL: https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-14/1/1–4/1–4–1/gazy-meditsinskie/ (дата обращения: 08. 08. 2022).
30. РМГ 61–2010 Государственная система обеспечения единства измерений. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки = State system for ensuring the uniformity of measurements. Accuracy, trueness and precision measures of the procedures for quantitative chemical analysis. Methods of evaluation. М.: Стандартинформ, 2013.
Review
For citations:
Krasheninina M.P., Galeeva E.V., Fomina I.A., Arslanov I.R., Golynets O.S., Somov D.V., Galeev R.R., Khohlov A.L. Methodology for Measuring Volume Fractions of Gases Using Gas Chromatography in Medical Nitrous Oxide: Features of Assessing Metrological Characteristics. Measurement Standards. Reference Materials. 2023;19(5):95-112. (In Russ.) https://doi.org/10.20915/2077-1177-2023-19-5-95-112

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).