Preview

Measurement Standards. Reference Materials

Advanced search

GET 63–2019: Innovative Method for Stabilizing Liquid Flow Rate in a Reference Installation 3

https://doi.org/10.20915/2077-1177-2023-19-5-71-82

Abstract

   Establishing the pinpoint accuracy of national primary standards for units of mass and volume flow rates (mass and volume) of liquid (water) is a priority in the national economy of most states. In Russia and abroad, the principle of operation of standards for units of flow rate and amount of liquid is based on the gravimetric weighing method, i. e., on measuring the mass of liquid entering a weighing container over a certain averaging time interval. The decisive condition for the accuracy of the result of the standard is the stabilization of liquid flow rate, as well as the choice of the optimal method for creating a forced flow of liquid in the pressure pipeline and measuring line. The widely accepted method of creating a forced flow of liquid by placing it at a height or supplying it using pumps has one inconvenient consequence – the bulkiness of the standard design. The creation of such a design entails economic, labor, and time costs, which can adversely affect the test conditions and results. The author’s innovative method of active damping of pressure and fluid flow fluctuations, which eliminates the need to place the pressure tank at a great height above ground level, allows minimizing inconveniences. This method is implemented in the pressure pipeline and measuring line of the reference installation 3 of the State Primary Special Standard of Units of Mass and Volume of Liquid in a Flow and of Mass and Volume Flow Rates of a Liquid GET 63–2019.

   The purpose of the article is to substantiate and experimentally confirm the high efficiency of this method.

   The results of experimental research of changes in the absolute pressure in the air cushion and the liquid level in the pressure tank of the stabilization module confirmed the efficiency of the proposed method based on the obtained minimum values of the relative deviations of the instantaneous and average liquid flow rates. The engineering solution presented in the article is of interest to economic entities and commercial organizations interested in reducing the costs of testing the volumetric flow rate (mass and volume) of liquid (water).

About the Author

A. R. Tukhvatullin
VNIIR – Affiliated Branch of the D. I. Mendeleyev Institute for Metrology
Russian Federation

Al’bert R. Tukhvatullin, Senior Researcher

Department of Metrological Support of Means and Systems for Measuring Flow and Quantity of Liquid

420088

7 а, st. 2nd Azinskaya

Kazan



References

1. Engel R. Modeling the uncertainty in liquid flowmeter calibration and application – Requirements and their technical realization for PTB’s national water flow standard // Proceedings 13<sup>th</sup> International Conference SENSOR, Nürnberg, Germany, 22–24 May 2007 / Nürnberg, Germany: PTB, 2007. Vol. 2. P. B8.6.

2. Engel R., Baade H. J. Model-based flow diverter analysis for an improved uncertainty determination in liquid flow calibration facilities // Measurement Science and Technology. 2010. Vol. 21, № 2. P. 025401. doi: 10.1088/0957–0233/21/2/025401

3. Pöschel W., Engel R. The concept of a new primary standard for liquid flow measurement at PTB Braunschweig // Proceedings 9<sup>th</sup> International Conference on Flow Measurement FLOMEKO ‘98, Lund, Sweden, 15–17 June 1998. P. 7–12.

4. Guelich J. F., Bolleter U. Pressure pulsations in centrifugal pumps // Journal of Vibration and Acoustics. 1992. Vol. 114, № 2. P. 272–279. doi: 10.1115/1.2930257

5. Dai C., Kong F., Dong L. Pressure fluctuation and its influencing factors in circulating water pump // Journal of Central South University. 2013. Vol. 20, № . 1. P. 149–155. doi: 10.1007/s11771-013-1470-6

6. Bashta M., Rudnev S. S., Nekrasov B. B. Hydraulics, hydraulic machines and hydraulic drives. Moscow: Mashinostroenie; 1982. 423 p. (In Russ.).

7. Singh P. J., Chaplis W. K. Experimental evaluation of bladder type pulsation dampeners for reciprocating pumps // Proceedings 7<sup>th</sup> International Pump Users Symposium, Texas A&M University, 1990. P. 39–47.

8. Kim J., Yoon G. H., Noh J., Lee J., Kim K., Park H. et al. Development of optimal diaphragm-based pulsation damper structure for high-pressure GDI pump systems through design of experiments. Mechatronics. 2013;23(3):369–380. doi: 10.1016/j.mechatronics.2013.02.001

9. Wachel J. C., Price S. M. Understanding how pulsation accumulators work // Proceedings of the ASME11<sup>th</sup> Annual Energy-Sources Technology Conference. 1988. P. 23–31.

10. Vetter G., Seidl B. Pressure pulsation dampening methods for reciprocating pumps // Proceedings of the 10<sup>th</sup> International Pump Users Symposium, Houston, Texas. 1993. Vol. 19. P. 25–39.

11. Tukhvatullin A. R., Shchelchkov A. V., Fafurin V. A. State primary special standard of units of mass and volume of liquid in a stream, mass and volumetric fowrates of liquid GET 63–2019. Izmeritel’naya Tekhnika. 2021;(2):3–8. (In Russ.). doi: 10.32446/0368–1025it.2021-2-3-8

12. Miller J. E. Liquid dynamics of reciprocating pumps. Part 2. Pulsation-control devices and techniques // Oil & Gas Journal. 1983. Vol. 81, № 18.

13. Mc-Entee L. B. J. Oscillating diaphragms // Proceedings of the international conference on modeling and simulation of microsystems. 1999. Vol. 2. P. 597–600.

14. Sewall J. L., Wineman D. A., Herr R. W. An investigation of hydraulic-line resonance and its attenuation // NASA TM X-2787. 1973. P. 80.

15. Kratirov D. V., Mikheev N. I., Molochnikov V. M., Saushin I. I., Tukhvatullin A. R., Fafurin V. A. Radial nozzles for non-cavitating flow of water at high pressure drops. Measurement Techniques. 2017;60(9):912–915. (In Russ.).

16. Tukhvatullin A. R. State primary special standard of units of mass and volume of liquid in a stream, mass and volumetric flow rates of liquid. In: International youth scientific conference dedicated to the 60<sup>th</sup> anniversary of the first human flight into outer space and the 90<sup>th</sup> anniversary of the Kazan National Research Technical University, 10–11 November 2021. Kazan: Vol. IV. Kazan: Sagieva A. R.; 2021. Vol. IV. P. 211–217. (In Russ.).

17. ISO 9300:2022 Measurement of gas flow by means of critical flow nozzles // ISO [website]. URL: https://www.iso.org/standard/77401.html (Accessed: 04. 04. 2023).

18. ГЭТ 63–2019 Государственный первичный специальный эталон единиц массы и объема жидкости в потоке, массового и объемного расходов жидкости / Институт-хранитель ФГУП «ВНИИМ им. Д. И. Менделеева». Текст : электронный // Федеральный информационный фонд по обеспечению единства измерений : официальный сайт. 2019. URL: https://fgis.gost.ru/fundmetrology/registry/12/items/1365156 (дата обращения: 04. 04. 2023).


Review

For citations:


Tukhvatullin A.R. GET 63–2019: Innovative Method for Stabilizing Liquid Flow Rate in a Reference Installation 3. Measurement Standards. Reference Materials. 2023;19(5):71-82. (In Russ.) https://doi.org/10.20915/2077-1177-2023-19-5-71-82

Views: 350


ISSN 2687-0886 (Print)