Preview

Measurement Standards. Reference Materials

Advanced search

Laser Phase Rangefinders: Ways to Improve Accuracy

https://doi.org/10.20915/2077-1177-2023-19-5-59-70

Abstract

   Scientific and technological progress in the field of geodetic and industrial measurements in terms of the use of laser rangefinders operating in ranges up to 5000 meters has led to a reduction in the error of such measuring instruments over the past ten years by two or more times. Such rapid development of high-precision rangefinder technologies has led to a significant revision of the requirements for their metrological support, as well as to the need to develop a new generation of length standards, the stock of metrological accuracy of which would provide an assessment of the metrological characteristics of all types of existing and promising length measuring instruments with a laser rangefinder. To solve this problem, the Institute’s staff conducted research within the framework of a number of thematic research and development works in terms of developing the appearance of a new generation of length standards operating in the range up to 5000 meters in an open atmosphere. Within the framework of this article, one of the developed models of a high-precision complex of measuring instruments for length and coordinate increments is considered, which is a serial high-precision laser phase light meter, modified by the institute’s staff in terms of the system for receiving and processing measuring signals. At the same time, in order to increase the accuracy of length measurements using the developed range finder layout, it is proposed to investigate ways to reduce the errors of the model components of the boundaries of its error. To ensure the smallest error in determining the hardware correction of the rangefinder layout, it is proposed to use funds from the state primary special standard of the unit of length. As promising ways to reduce the error in determining the phase difference of signals, it is proposed to use digital recording and signal processing devices that implement a method for calculating the phase difference of signals by mathematically processing the recorded data using a specially developed computational algorithm based on Fourier analysis. For the most accurate determination of the values of the pulse repetition frequency of signals and the values of the speed of light on the measured track, it is proposed to improve the means of determining these indicators. The use of the proposed methods to improve the accuracy of measuring the length of laser phase rangefinders allows you to provide the necessary margin of metrological accuracy.

About the Authors

D. A. Lubchenko
All-Russian Scientific Research Institute of Physical-Technical and Radio-Technical Measurements (VNIIFTRI)
Russian Federation

Daria A. Lubchenko, Junior Researcher

141570

Moscow region

Mendeleevo



A. V. Mazurkevich
All-Russian Scientific Research Institute of Physical-Technical and Radio-Technical Measurements (VNIIFTRI)
Russian Federation

Andrey V. Mazurkevich, Head of the Department

Department of Metrological Support of Geodetic Measurements

141570

Moscow region

Mendeleevo



References

1. Mesnjankin N. I., Pavlov E. P., Potapov S. L., Potapova N. I. Analytical model of a laser rangefinder for measuring distances to objects with poorly predicted motion dynamics. Opticheskii Zhurnal. 2023;90(2):46–58. (In Russ.). doi: 10.17586/1023-5086-2023-90-02-46-58

2. Burenin A. V. Study of the features of the propagation of low-frequency pseudo-random signals for problems of acoustic ranging of underwater objects. Dissertation. POI FEB RAS; 2013. (In Russ.).

3. Morgunov Y. N., Bezotvetnykh V. V., Burenin A. V., Voitenko E. A., Golov A. A. Experimental testing of high-accuracy underwater range-finding technology. Acoustical Physics. 2018;64(2):190–195. (In Russ.). doi: 10.7868/S0320791918020120

4. Russo P. Ranging of small targets with long range. Patent RF, no. 2640399 C2, 2018. (In Russ.).

5. Urvaev I. N. Mobile robot navigation based on laser range methods. Measuring. Monitoring. Management. Control. 2021;1:44–51. (In Russ.).

6. Roy Yu. A., Sadovnikov M. A., Shargorodsky V. D. Russian laser ranging network – the basis for further increasing the accuracy of geodetic and ephemeris-time support of GLONASS. In: Metrology of time and space: Collection of works 6th International Symposium, 17–19 September 2012, Mendeleevo, Russia. Mendeleevo: VNIIFTRI; 2013. p. 284. (In Russ.).

7. Ignatenko I. Yu. Prospects for creating a reference complex for satellite laser ranging. In: Metrology of time and space: Collection of works VII International Symposium, 17–19 September 2014, Suzdal, Russia. Mendeleevo: VNIIFTRI; 2014. pp. 207–208. (In Russ.).

8. Tsyba E. N., Vostruhov N. A. Improvements in the MMC SSTF Tools to Analyze the LLR and SLR Observations. Transactions of the Institute of Applied Astronomy RAS. 2018;45;120–123. (In Russ.). doi: 10.32876/ApplAstron.45.120–123

9. Grigoriev A. V., Kochegarov I. I., Zatylkin A. V. Analysis by laser ranging high accuracy. XXI Century: Resumes of the Past and Challenges of the Present Plus. 2015;1(4):154–160. (In Russ.).

10. Sadovnikov M. A. Necessary conditions for achieving submillimeter measurement accuracy in satellite laser ranging. Electromagnetic Waves and Electronic Systems. 2009;14(12):13–16. (In Russ.).

11. Sokolov D. A., Oleinik-Dzyadik O. M., Silvestrov I. S. A standard measuring complex for length in the range of up to 60 m from the State Primary Special Standard of a Unit of Length in the range of 24 m – 4 000 km (GPSED). Proceedings of the Institute of Applied Astronomy of the Russian Academy of Sciences. 2020;52:63–67. (In Russ.).

12. Mazurkevich A. V., Sokolov D. A., Timofeev E. Yu. 19<sup>th</sup> International Congress of Metrology CIM2019. Metrologist’s Bulletin. 2019;(4):28–30. (In Russ.).

13. Bolshakov V. D., Deimlich F., Golubev A. N., Vasiliev V. P. Radio geodetic and electro-optical measurements : textbook for universities. Moscow: Nedra; 1985. 303 p. (In Russ.).

14. Golub D. A., Kolmogorov O. V. Assessment of the metrological characteristics of the developed laser phase range finder using its error model. In: Metrology in the 21<sup>st</sup> Century: Proceedings of the VII Scientific and Practical Conference of Young Scientists, Graduate Students and Specialists, 21 March 2019, Mendeleevo. Mendeleevo: VNIIFTRI; 2019. pp. 18–20. (In Russ.).

15. Lyubchenko D. A., Donchenko S. S. Results of the development and research of individual components of a prototype of an optical phase range finder with submillimeter resolution. In: Metrology in the 21<sup>st</sup> Century: Materials of the VIII Scientific and Practical Conference of Young Scientists, Graduate Students and Specialists, 06 February 2020, Mendeleevo. Mendeleevo: VNIIFTRI; 2021. pp. 9–14. (In Russ.).

16. Novikova I. V., Mazurkevich A. V., Kolmogorov O. V., Donchenko S. S., Lyubchenko D. A. Analysis of methods for resolving the ambiguity of phase measurements carried out using a prototype of an optical range finder with submillimeter resolution. In: Metrology of Time and Space: Proceedings of the X International Symposium, 06–08 October 2021, Mendeleevo. Mendeleevo: VNIIFTRI; 2021. pp. 108–112. (In Russ.).

17. Siraya T. N. Methods of Data Processing in Measurements and Metrological Models. Measurement Techniques. 2018;(1):9–14. (In Russ.).

18. Rabinovich S. G. Measurement errors and uncertainties: theory and practice. New York: Springer-Verlag; 2005. 308 p. (In Russ.).

19. Novikova I. V. Experimental investigation of methods for determining the instrumental component of the systematic error of measurements of the reference measuring complex of length in the range of up to 60 m when working with a phase light detector. Vestnik Metrologa. 2023;(1):32–36. (In Russ.).

20. Vshivkova O. V. Physics of the Earth and atmosphere. The influence of the atmosphere on the results of geodetic measurements : textbook. Moscow: MIIGAiK; 2017. (In Russ.).

21. ГЭТ 199-2018 Государственный первичный специальный эталон единицы длины: институт-хранитель ФГУП «ВНИИФТРИ» // Федеральный информационный фонд по обеспечению единства измерений : официальный сайт. URL: https://fgis.gost.ru/fundmetrology/registry/12/items/397885

22. МИ 2083–90 Рекомендация. Государственная система обеспечения единства измерений. Измерения косвенные. Определение результатов измерении и оценивание их погрешностей. М.: ВНИИМ им. Д. И. Менделеева, 1991.

23. Об обеспечении единства измерений: Федер. закон Рос. Федерации от 26 июня 2008 г. № 102-ФЗ: принят Гос. Думой Федер. Собрания Рос. Федерации 11 июня 2008 г.: одобрен Советом Федерации Федер. Собр. Рос. Федерации 18 июня 2008 г. (в редакции от 11 июня 2021 г. № 170-ФЗ) // Официальный интернет-портал правовой информации [сайт]. URL: https://www.consultant.ru/document/cons_doc_LAW_77904/

24. Об утверждении Государственной поверочной схемы для координатно-временных измерений: Приказ Федерального агентства по техническому регулированию и метрологии от 29 декабря 2018 г. № 2831 // Электронный фонд правовых и нормативно-технических документов : официальный сайт. URL: https://files.stroyinf.ru/Index2/1/4293727/4293727952.htm

25. Об утверждении Государственного первичного специального эталона единицы длины ГЭТ 199–2018: Приказ Федерального агентства по техническому регулированию и метрологии от 13 марта 2018 г. № 447 // Портал ГАРАНТ.РУ : официальный сайт. URL: https://base.garant.ru/71900290/

26. РМГ 29–2013. Рекомендации по межгосударственной стандартизации. Государственная система обеспечения единства измерений. Метрология. Основные термины и определения = State system for ensuring the uniformity of measurements. Metrology. Basic terms and definitions. М.: Стандартинформ, 2014.


Review

For citations:


Lubchenko D.A., Mazurkevich A.V. Laser Phase Rangefinders: Ways to Improve Accuracy. Measurement Standards. Reference Materials. 2023;19(5):59-70. (In Russ.) https://doi.org/10.20915/2077-1177-2023-19-5-59-70

Views: 398


ISSN 2687-0886 (Print)