Preview

Measurement Standards. Reference Materials

Advanced search

Thermal Expansion Measurements at High Temperatures: State and Prospects for Enhancing Measurement Accuracy

https://doi.org/10.20915/2077-1177-2025-21-4-99-111

Abstract

The review analyzes the current state and prospects for the development of high-temperature dilatometry. Basic definitions and concepts are given. The main types of dilatometers using contact (mechanical) and remote (optical) measurement methods are considered; some specific installations are described. Limiting factors of known methods are analyzed. Technological progress, which produces materials with new properties, requires the creation of approaches to study the characteristics and application possibilities of such materials, as well as, possibly, forecasting the directions of materials science. Techniques that can ensure further progress in high-temperature dilatometry technology are analyzed. This review is addressed to researchers – metrologists, material scientists, physicists working in the field of dilatometry, as well as specialists who create measuring instruments.

About the Authors

T. A. Kompan
D. I. Mendeleyev Institute for Metrology
Россия

Tatiana A. Kompan – Dr. Sci. (Eng.), Chief Researcher of the Laboratory of State Standards and Scientific Research in the Field of Thermal Expansion and Complex Thermal Analysis

19 Moskovsky ave., St. Petersburg, 190005



S. V. Kondratev
D. I. Mendeleyev Institute for Metrology
Россия

Sergei V. Kondratev – Researcher of the Laboratory of State Standards and Scientific Research in the Field Of Thermal Expansion and Complex Thermal Analysis

19 Moskovsky ave., St. Petersburg, 190005



References

1. Hossain SkM, Kim D, Park J, Lee S-Ch, Bhattacharjee S. Thermal expansion in functionalized 2D boron nitride: a first-principles investigation. Preprint. arXiv:2504.20443 [cond-mat.mtrl-sci]. Submitted on 29 April 2025. https://doi.org/10.48550/arXiv.2504.20443

2. Landau LD, Livshits EM. Statistical physics : 2nd edition, revised. Moscow: Nauka; 1964. 568 p. (In Russ.).

3. Hoppe von E, Lambertz A, Mecke R et al. Handbuch der Physik. Bd. 1. Geschichte der Physik, Vorlesungstechnik. Berlin: J. Springer; 1926.

4. Novikova SI. Thermal expansion of solids. Moscow: Nauka; 1974. 239 p. (In Russ.).

5. Kurbanov MM. Thermal expansion and isothermal compressibility of TLGATE2. Inorganic Materials. 2005;41(12):1277–1279. (In Russ.). https://doi.org/10.1007/s10789-005-0300-0

6. Bodryakov VY. Correlation between temperature dependences of thermal expansivity and heat capacity up to the melting point of tantalum. High Temperature. 2016;54(3):316–321. (In Russ.). https://doi.org/10.1134/S0018151X16030020

7. Fischer J, Wendland M. On the history of key empirical intermolecular potentials. Fluid Phase Equilibria. 2023;573:113876. https://doi.org/10.1016/j.fluid.2023.113876

8. Monroe JA, McAllister JS, Content DS, Zgarba J, Huerta Xr, Karaman I. Negative thermal expansion ALLVAR alloys for telescopes. In: Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III : Event SPIE Astronomical Telescopes + Instrumentation, Austin, Texas, United States, 2018. https://doi.org/10.1117/12.2314657

9. Kuzkin VA. Comment on “Negative thermal expansion in single-component systems with isotropic interactions”. The Journal of Physical Chemistry A. 2014;118(41):9793–9794.

10. Mary TA, Evans JSO, Vogt T, Sleight AW. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science. 1996;272(5258):90–92. https://doi.org/10.1126/science.272.5258.90

11. Watanabe Y, Suzuki K, Katase T. Miura A, Yamashita A, Mizuguchi Y. Uniaxial negative thermalexpansion in a weak-itinerant-ferromagnetic phase of CoZr2H3.49. Preprint. arXiv:2509.20765 [cond-mat.mtrl-sci]. Submitted on 25 September 2025. https://doi.org/10.48550/arXiv.2509.20765

12. Kim D, Lee S, Lee S-H, Kwon S. Measurement of thermal expansion over a wide range of temperatures by a pushrod dilatometer. Journal of the Korean Physical Society. 2020;77:496–504. https://doi.org/10.3938/jkps.77.496

13. Daw JE, Rempe JL, Knudson DL, Crepeau JC. Thermal expansion coefficient of steels used in LWR vessels. Journal of Nuclear Materials. 2008;376(2):211–215. https://doi.org/10.1016/j.jnucmat.2008.02.088

14. Fitzer E, Weisenburger S. Cooperative measurement of the thermal expansion behavior of different materials up to 1000 °C by pushrod dilatometers. AIP Conference Proceedings. 1972;3(1):25–35. https://doi.org/10.1063/1.2948565

15. Iwashita N. Temperature dependence of the coefficient of thermal expansion of different artificial graphites and the dimensional change during heat treatment of carbonized specimens. Tanso. 2019;289:148–153. https://doi.org/10.7209/tanso.2019.148

16. Iwashita N. Development of high temperature property measurements for artificial graphite materials and their analysis. Tanso. 2019;288:91–102. https://doi.org/10.7209/tanso.2019.91

17. Boboqambarova MA, Nazarov AV. Modeling changes in atomic structure around a vacancy with increasing temperature and calculation of temperature dependences of vacancy characteristics in bcc iron. Preprint. arXiv:2510.08877 [cond-mat.mtrl-sci]. Submitted on 10 October 2025. https://doi.org/10.48550/arXiv.2510.08877

18. Esin VA, Mallick R, Dadé M, Denand B, Delfosse J, Sallot P. Combined synchrotron X-ray diffraction, dilatometry and electrical resistivity in situ study of phase transformations in a Ti2AlNb alloy. Materials Characterization. 2020;169:110654. https://doi.org/10.1016/j.matchar.2020.110654

19. Esin VA, Denand B, Le Bihan Qu, Dehmas M, Teixeira J, Geandier G et al. In situ synchrotron X-ray diffraction and dilatometric study of austenite formation in a multi-component steel: Influence of initial microstructure and heating rate. Acta Materialia. 2014;80:118–131. https://doi.org/10.1016/j.actamat.2014.07.042

20. Converse ES, Thorpe F, Rivera J, Charalambous H, King G, Cahill JT et al. In-situ synchrotron x-ray diffraction and thermal expansion of TiB2 up to ~3050 °C. Journal of the European Ceramic Society. 2023;43(8):3005–3012. https://doi.org/10.1016/j.jeurceramsoc.2023.01.050

21. Beynon OT, Hashibon A. Anharmonic effects in Ge2Sb2Te5 and consequences on thermodynamic stability. Preprint. arXiv:2510.12526 [cond-mat.mtrl-sci]. Submitted on 14 October 2025. https://doi.org/10.48550/arXiv.2510.12526

22. Xin YC, Ling XYi, Lodico J, O’Neill T, Regan BC, Mecklenburg M. Mapping temperature using transmission Kikuchi diffraction. Preprint. arXiv:2510.14175v1 [cond-mat.mes-hall] 16 October 2025. https://arxiv.org/html/2510.14175v1

23. Ho CY, Taylor RE. Thermal expansion of solids. Materials Park, OH: ASM International; 1998. P. 293.

24. Touloukian YS, Kirby RK, Taylor R, Desai PD. Thermophysical properties of matter – the TPRC data series. Vol. 12. Thermal expansion metallic elements and alloys. New York: IFI–Plenum; 1975. 1442 p.

25. Maglic KD, Cezairliyanand A, Peletsky VE. Compendium of thermophysical property measurement methods: Vol. 1 Survey of measurement techniques. New York: Springer; 1984. 806 p.

26. Bianchini G, Barucci M, Del Rosso T, Pasca E, Ventura G. Interferometric dilatometer for thermal expansion coefficient determination in the 4–300 K range. Measurement Science and Technology. 2006;17(4):689. https://doi.org/10.1088/0957–0233/17/4/013

27. Kompan TA. The state primary standard of the TCLR unit of solids. In: The Russian Metrological Encyclopedia. Saint-Petersburg: Liki Rossii; 2001. P. 461–463. (In Russ.).

28. Kompan TA, Korenev AS, Lukin AYa. Monitoring the accuracy and provision of reliability for results of measuring the phase shift in an interference dilatometer. Measurement Techniques. 2007;50(4):372–377.

29. Roberts RB. Absolute dilatometry using a polarization interferometer. Journal of Physics E: Scientific Instruments. 1981;14(12):1386–1388.

30. Bennett SJ. An absolute interferometric dilatometer. Journal of Physics E: Scientific Instruments. 1977;10(5):525. https://doi.org/10.1088/0022–3735/10/5/030

31. Oikawa N, Maesono A, Tye RP. Thermal expansion measurements of quartz glass. In: Gaal P, Apostolescu D. Thermal conductivity 24, Thermal expansion 12. Lancaster: Technomic; 1999. P. 405–414.

32. Masuda K, Erskine D, Anderson OL. Differential laser-interferometer for thermal expansion measurements. American Mineralogist. 2000;85:279–282.

33. Escalona R, Rosi C. Frequency modulated wave interferometry for thermal expansion measurements. In: Proceedings of SPIE – The International Society for Optical Engineering, Guanajuato, Mexico, 18–22 September 1995. Ed. D. Malacara-Hernandez [et al.]. Guanajuato: Mexico; 1996. Vol. 2730. P. 414–417.

34. Miiller AP, Cezairliyan A. High-Speed interferometric techniques for thermal expansion measurements at high temperatures. In: Ho CY, Taylor RE. Thermal Expansion of Solids. United States of America : ASM International; 1998. P. 245–242.

35. Kompan TA, Kondratiev SV, Korenev AS, Puhov N. F., Inochkin FM, Kruglov SK et al. Measurement of the thermal expansion coefficient for ultra-high temperatures up to 3000 K. International Journal of Thermophysics. 2018;39(3):40. https://doi.org/10.1007/s10765-017-2353-0

36. Kozlovskii YuM, Stankus SV. Thermal expansion of beryllium oxide in the temperature interval 20–1550 °C. High Temperature. 2014;52(4):536–540. (In Russ.). https://doi.org/10.7868/S0040364414030168

37. Kozlovskii YM, Stankus SV. The density and thermal expansion of dysprosium in the temperature range 110–1950 K. Thermophysics and Aeromechanics. 2015;22(4):501–508. (In Russ.).


Review

For citations:


Kompan T.A., Kondratev S.V. Thermal Expansion Measurements at High Temperatures: State and Prospects for Enhancing Measurement Accuracy. Measurement Standards. Reference Materials. 2025;21(4):99-111. (In Russ.) https://doi.org/10.20915/2077-1177-2025-21-4-99-111

Views: 62

JATS XML

ISSN 2687-0886 (Print)