Preview

Measurement Standards. Reference Materials

Advanced search

Bismuth Determination by Controlled-Potential Coulometry: Developing a Highly Accurate Procedure based on GET 176

https://doi.org/10.20915/2077-1177-2023-19-4-129-141

Abstract

In this work, we develop a procedure for reproducing the units of bismuth mass fraction in metallic bismuth and those of bismuth (III) mass concentration in bismuth nitrate solutions by controlled-potential coulometry based on the GET 176-2019 State primary standard of mass (molar, atomic) fraction units and mass (molar) concentration of components in liquid and solid substances and materials based on coulometry. The results obtained can be used when manufacturing certified reference materials (CRMs) for the composition of high-purity bismuth and CRMs for the composition of solutions of bismuth (III) ions directly traceable to GET 176-2019. These CRMs may find application in pharmacological, metallurgical, and nuclear industries.

About the Authors

V. M. Zyskin
UNIIM – Affiliated Branch of the D. I. Mendeleyev Institute for Metrology
Russian Federation

Veniamin M. Zyskin – Leading Engineer, the Laboratory of Physical and Chemical Methods for Metrological Certification of Reference Materials

4 Krasnoarmeyskaya str., Yekaterinburg, 620075



A. В. Sobina
UNIIM – Affiliated Branch of the D. I. Mendeleyev Institute for Metrology
Russian Federation

Alena V. Sobina – Cand. Sci. (Eng.), Head of the Laboratory of Physical and Chemical Methods for Metrological Certification of Reference Materials

4 Krasnoarmeyskaya str., Yekaterinburg, 620075



References

1. Juhin Ju. M., Mihajlov Ju. I. Novosibirsk: SO RAN; 2001. 360 p. (In Russ.).

2. Polyvjannyj I. R., Ablanov A. D., Batyrbekova S. A. Bismuth. Alma-Ata: Nauka; 1989. 316 p. (In Russ.).

3. Denisov V. M., Belousov N. V., Moiseev G. K., Bahvalov S. G., Istomin S. A. Bismuth-containing materials: structure and physico-chemical properties. Yekaterinburg: UroRAN; 2000. 527 p. (In Russ.).

4. Gülseren M. K., Kovan V., Tezel T. Three-dimensional printability of bismuth alloys with low melting temperatures. Journal of Manufacturing Processes. 2023;92:238–246. https://doi.org/10.1016/j.jmapro.2023.02.057

5. Gu D., Yuan Yu., Liu J., Li D., Zhang W., Wu L. et al. The electrochemical properties of bismuth-antimony-tin alloy anodes for magnesium ion batteries. Journal of Power Sources. 2022;548;232076. https://doi.org/10.1016/j.jpowsour.2022.232076

6. Mohsin T. B., Abidul Islam S. M., Tonni T. T., Rhaman M. M. Analysis of conductivity and band-gap energy of bismuth ferrite nanoparticles as prospective photovoltaic material. Materials Today: proceedings. 2023. Available online 8 February. https://doi.org/10.1016/j.matpr.2023.01.330

7. Bernard-Granger G., Addad A., Navone Ch., Soulier M., Simon Ju., Szkutnik P. D. Influence of nanosized inclusions on the room temperature thermoelectrical properties of a p-type bismuth-tellurium-antimony alloy. Acta Materialia. 2012;60(11):4523–4530. https://doi.org/10.1016/j.actamat.2012.05.007.

8. Karimov Kh. S., Fatima N., Qasuria T. A., Siddiqui K. J., Bashir M. M., Alharbi H. F. Innovative semitransparent photo-thermoelectric cells based on bismuth antimony telluride alloy. Journal of Alloys and Compounds. 2020;816:152–593. https://doi.org/10.1016/j.jallcom.2019.152593

9. Jensen B. A., Tang W., Liu X., Nolte A. I., Ouyang G. et al. Optimizing composition in MnBi permanent magnet alloys. Acta Materialia. 2019;181:595–602. https://doi.org/10.1016/j.actamat.2019.10.003

10. Qin X., Sui C., Di L., Wang L., Xu X. Studies on preparation and properties of low temperature phase of MnBi prepared by electrodeposition. Journal of Alloys and Compounds. 2019;787:1272–1279. https://doi.org/10.1016/j.jallcom.2019.02.109

11. El-Sharkawy R. M., Abdou F. S., Gizawy M. A., Allam E. A., Mahmoud M. E. Bismuth oxide nanoparticles (Bi2O3 NPs) embedded into recycled-Poly(vinyl chloride) plastic sheets as a promising shielding material for gamma radiation. Radiation Physics and Chemistry. 2023;208:110838. https://doi.org/10.1016/j.radphyschem.2023.110838

12. Praveenkumar P., Venkatasubbu D. G., Thangadurai P. Nanocrystalline bismuth oxyiodides thick films for X-ray detector. Materials Science in Semiconductor Processing. 2019;104:104686. https://doi.org/10.1016/j.mssp.2019.104686

13. Rameshkumar C., Gayathri R., Subalakshmi R. Synthesis and characterization of undopped bismuth ferrite oxide nanoparticles for the application of cancer treatment. Materials Today: Proceedings. 2021;43(6):3662–3665. https://doi.org/10.1016/j.matpr.2020.09.840

14. Shetu S. A., Sanchez-Palestino L. M., Rivera-Sanchez G., Bandyopadhyay D. Medicinal bismuth: Bismuth-organic frameworks as pharmaceutically privileged compounds. Tetrahedron. 2022;129:133117. https://doi.org/10.1016/j.tet.2022.133117

15. Sun H., Sadler P. J. Bismuth Antiulcer Complexes. In: Clarke M. J., Sadler P. J. (ed.) Metallopharmaceuticals II. Topics in Biological Inorganic Chemistry, vol. 2. Springer, Berlin, Heidelberg; 1999. P. 159–185. https://doi.org/10.1007/978-3-642-60061-6_5

16. Salvador J. A. R., Figueiredo S. A. C., Pinto R. M. A., Silvestre S. M. Bismuth compounds in medicinal chemistry. Future Medicinal Chemistry. 2012;4:1495–1523. https://doi.org/10.4155/fmc.12.95

17. Timakova E. V., Bun’kova E. I., Afonina L. et al. Synthesis of high-purity basic bismuth (III) succinate as a pharmaceutical substance. Russian Journal of Applied Chemistry. 2021;94:911–919. https://doi.org/10.1134/S1070427221070077

18. Andrews P. C., Ferrero R. L., Junk P. C., Kumar I., Luu Q., Nguyen K. Bismuth (III) complexes derived from non-steroidal anti-inflammatory drugs and their activity against Helicobacter pylori. Dalton Trans. 2010;39(11):2861–2868. https://doi.org/10.1039/c000164c

19. Ottlecz A., Romero J. J., Hazell S. L., Graham D. Y., Lichtenberger L. M. Phospholipase activity of helicobacter pylori and its inhibition by bismuth salts. Digestive Diseases and Sciences. 1993; 38(11):2071–2080. https://doi.org/10.1007/BF01297087

20. Zyskin V. M., Shimolin A. I., Sobina A. V., Terentiev G. I. Bating a reference installation based on controlled-potential coulometry metod in the frame of improving the state primary standard GET 176 and its measurement capabilities. Reference Materials. 2016;(2):44–54. https://doi.org/10.20915/2077-1177-2016-0-2-44-54. (In Russ.).

21. Zyskin V. М., Gusev V. N., Теrеntiev G. I., Моgilevskiy А. N. The use of precise coulometry with controlled potential for the determination of metrological characteristics of certified reference materials for composi tion of substances. Reference Materials. 2012;(1):53–60. (In Russ.).

22. Mohr P. J., Taylor B. N., Newell D. B. CODATA recommended 2018 values of the fundamental physical constants: 2014. Available via NIST. Accessed 4 august 2022. http://physics.nist.gov/constants

23. Моgilevskiy А. N. Precision coulometry at controlled potential. Instrumental errors. Journal of Analytical Chemistry. 2000;55(11):1201–1205. (In Russ.).

24. Rechnic G. A. Electroanalysis at controlled potential. Moscow: Himija; 1967. 106 p. (In Russ.).


Review

For citations:


Zyskin V.M., Sobina A.В. Bismuth Determination by Controlled-Potential Coulometry: Developing a Highly Accurate Procedure based on GET 176. Measurement Standards. Reference Materials. 2023;19(4):129-141. (In Russ.) https://doi.org/10.20915/2077-1177-2023-19-4-129-141

Views: 313


ISSN 2687-0886 (Print)