Selective Sorption of Silver Ions from Aqueous Solutions Using Poly(N-thiocarbamoyl‑ 3-aminopropylsilsesquioxane)
https://doi.org/10.20915/2077-177-2022-18-2-57-71
Abstract
The accumulation of electronic waste (e-waste) on the ground leads to environmental pollution with toxic metal ions, which subsequently harms all living organisms. Many countries still use hydrometallurgical or manual methods to extract silver ions from e-waste. These methods are unsustainable and highly toxic; therefore, it becomes necessary to introduce new environmentally compatible methods for separating valuable components from objects of various compositions. This article proposes an environmentally compatible method for the extraction of silver ions from multicomponent systems using poly(N-thiocarbamoyl‑3-aminopropylsilsesquioxane). The sorbent surface was studied by Fourier-transform infrared spectroscopy using an attenuated total internal reflection accessory. The concentration of grafted thiourea groups is 1.39 mmol/g according to elemental analysis. It has been determined that this sorbent is capable of quantitatively extracting silver ions in the pH range from 0 to 6 at a concentration of silver ions in the initial solution of 1·10–4 mol/dm3; the static sorption capacity for silver ions under experimental conditions reaches 1.22 mmol/g. When sorption is carried out in dynamic mode, the value of the dynamic capacity before breakthrough is 0.046 mmol/g, and the value of the total dynamic capacity for silver ions is 0.132 mmol/g. The highest desorption (71–78 %) is achieved using sulfuric acid solutions with a thiourea concentration gradient.
About the Authors
E. A. MelnikRussian Federation
Post-graduate Student, Engineer of the Department of Analytical and Environmental Chemistry, engineer of the department of the
State Service of Reference Materials
A. A. Sysolyatina
Russian Federation
Master Student
A. S. Kholmogorova
Russian Federation
Cand. Sc. (Chem.), Associate Professor of the Department of Analytical and Environmental Chemistry
L. K. Neudachina
Russian Federation
Cand. Sc. (Chem.), Head of the Depar tment of Analytical and Environmental Chemistry
V. A. Osipova
Russian Federation
Junior Researcher, Laboratory of Organic Materials
A. V. Pestov
Russian Federation
Cand. Sc. (Chem.), Senior Researcher, Acting Head of the Laborator y of Organic Materials
References
1. Chakraborty S. C., Qamruzzaman M., Zaman M. W. U., Alam M. M., Hossain M. D., Pramanik B. K. [et al.]. Metals in e -waste: Occurrence, fate, impacts and remediation technologies. Process Safety and Environmental Protection 2022;(162):230–252. https://doi.org/10.1016/j.psep.2022.04.011
2. Westerhoff P., Lee S., Yang Yu, Gordon G. W., Hristovski K., Halden R. U. [et al.]. Characterization, recovery opportunities, and valuation of metals in municipal sludges from U. S. Wastewater treatment plants nationwide. Environmental Science & Technology. 2015;49(16):9479–9488. https://doi.org/10.1021/es505329q
3. Dutta D., Goel S., Kumar S. Health risk assessment for exposure to heavy metals in soils in and around E-waste dumping site. Journal of Environmental Chemical Engineering. 2022;10(2):107269. https://doi.org/10.1016/j.jece.2022.107269
4. Bakhiyi B., Gravel S., Ceballos D., Flynn M. A., Zayed J. Has the question of e-waste opened a Pandora’s box? An overview of unpredictable issues and challenges. Environment International. 2018;(110):173–192. https://doi.org/10.1016/j.envint.2017.10.021
5. Das S., Chellam S. Estimating light-duty vehicles’ contributions to ambient PM2.5 and PM10 at a near-highway urban elementary school via elemental characterization emphasizing rhodium, palladium, and platinum. Science of The Total Environment. 2020;(747):141268. https://doi.org/10.1016/j.scitotenv.2020.141268
6. Mowla M., Rahman E., Islam N., Aich N. Assessment of heavy metal contamination and health risk from indoor dust and air of informal E-waste recycling shops in Dhaka, Bangladesh. Journal of Hazardous Materials Advances. 2021;(4):100025. https://doi.org/10.1016/j.hazadv.2021.100025
7. Pateraki St., Manousakas M., Bairachtari K., Kantarelou V., Eleftheriadis K., Vasilakos Ch. [et al.]. The traffic signature on the vertical PM profile: Environmental and health risks within an urban roadside environment. Science of The Total Environment. 2019;(646):448– 459. https://doi.org/10.1016/j.scitotenv.2018.07.289
8. Martell A. E., Smith R. M. Critical stability constants. Vol. 3 Other organic ligands. New-York: Ed. Plenum; 1989. P. 313–314
9. Yun J. I., Bhattarai S., Yun Y. S., Lee Y. S. Synthesis of thiourea-immobilized polystyrene nanoparticles and their sorption behavior with respect to silver ions in aqueous phase. Journal of Hazardous Materials. 2018;(344):398–407. https://doi.org/10.1016/j.jhazmat.2017.10.050
10. Kumar P., Ansari K. B., Koli A. C., Gaikar V. G. Sorption behavior of thiourea-grafted polymeric resin toward silver ion, reduction to silver nanoparticles, and their antibacterial properties. Industrial Engineering Chemistry. 2013;52(19):6438–6445. https://doi.org/10.1021/ie3035866
11. Guo X., Zhang L., Tian Q. [et. al.]. Stepwise extraction of gold and silver from refractory gold concentrate calcine by thiourea. Hydrometallurgy. 2020;(194):105330. https://doi.org/10.1016/j.hydromet.2020.105330
12. Wang L., Xing R., Liu S., Yu H. [et al.]. Recovery of silver (I) using a thiourea-modified chitosan resin. Journal of Hazardous Materials. 2010;180(1–3):577–582. https://doi.org/10.1016/j.jhazmat.2010.04.072
13. Zhang M., Zhang Y., Helleur R. Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea– glutaraldehyde. Chemical Engineering Journal. 2015;(264):56–65. https://doi.org/10.1016/j.cej.2014.11.062
14. Negrea P., Gabor A., Davidescu C. M., Ciopec M., Negrea A., Duteanu N. Kinetics and thermodynamics modeling of Nd(III) removal from aqueous solution using modified Amberlite XAD7. Journal of Rare Earths. 2020;38(3):306–314. https://doi.org/10.1016/j.jre.2019.04.023
15. Lee J. [et al.]. Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: A review. Separation and Purification Technology. 2020;(246):116896. https://doi.org/10.1016/j.seppur.2020.116896
16. Losev V. N., Elsufiev E. V., Buyko O. V., Trofimchuk A. K., Horda R. V., Legenchuk O. V. Extraction of precious metals from industrial solutions by the pine (Pinus sylvestris) sawdust-based biosorbent modified with thiourea groups. Hydrometallurgy. 2018;(176):118– 128. https://doi.org/10.1016/j.hydromet.2018.01.016
17. Chen X. [et al.]. Recovery and reduction of Au(III) from mixed metal solution by thiourearesorcinol-formaldehyde microspheres. Journal of Hazardous Materials. 2020;(397):122812. https://doi.org/10.1016/j.jhazmat.2020.122812
18. Yu D., Morisada S., Kawakita H. [et al.]. Gold recovery from precious metals in acidic media by using human hair waste as a new pretreatment-free green material. Journal of Environmental Chemical Engineering. 2021;9(1):104724. https://doi.org/10.1016/j.jece.2020.104724
19. Pal N., Sim S., Cho E.-B. Multifunctional periodic mesoporous benzene-silicas for evaluation of CO2 adsorption at standard temperature and pressure. Microporous and Mesoporous Materials. 2020;(293):109816. https://doi.org/10.1016/j.micromeso.2019.109816
20. Kaczmarek A. M., Abednatanzi S., Esquivel D., Krishnaraj C., Jena H. S. [et al.]. Amine-containing (nano-) Periodic Mesoporous Organosilica and its application in catalysis, sorption and luminescence. Microporous and Mesoporous Materials. 2020;(291):109687. https://doi.org/10.1016/j.micromeso.2019.109687
21. Chen L., Zhang J., Zhou X., Yang S., Zhang Q. [et al.]. Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics. Acta Biomaterialia. 2019;(86):406–415. https://doi.org/10.1016/j.actbio.2019.01.005
22. Yang H., Yu B., Song P., Maluk C., Wang H. Surface-coating engineering for flame retardant flexible polyurethane foams: A critical review. Composites Part B: Engineering. 2019;(176):107185. https://doi.org/10.1016/j.compositesb.2019.107185
23. Tang T., Han C., Deng J., Luo G. Controllable preparation of thio-functionalized composite polysilsesquioxane microspheres in a microreaction system. Advanced Powder Technology. 2022;33(5):103578. https://doi.org/10.1016/j.apt.2022.103578
24. Zhang W., Zhang X., Qin Z., He J., Lan Y. [et al.]. Interpenetrating polymer network-based composites reinforced by polysilsesquioxanes: Molecular dynamic simulations and experimental analysis. Composites Part B: Engineering. 2021;(209):108604. https://doi.org/10.1016/j.compositesb.2021.108604
25. Banerjee S., Kataoka S., Takahashi T., Kamimura Y. [et al.]. Controlled formation of ordered coordination polymeric networks using silsesquioxane building blocks. Dalton Transactions. 2016;(45):17082. https://doi.org/10.1039/c6dt02868c
26. Li P., Lu X., Pan Y., Xin Z. Synthesis of non-spherical bridged polysilsesquioxane particles with controllable morphology. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022;(637):128203. https://doi.org/10.1016/j.colsurfa.2021.128203
27. Choi Y.-M., Jung J., Lee A. S., Hwang S. S. Photosensitive hybrid polysilsesquioxanes for etching-free processing of flexible copper clad laminate. Composites Science and Technology. 2021;(201):108556. https://doi.org/10.1016/j.compscitech.2020.108556
28. Ehgartner C. R., Werner V., Selz S., Hüsing N., Feinle A. Carboxylic acid-modified polysilsesquioxane aerogels for the selective and reversible complexation of heavy metals and organic molecules. Microporous and Mesoporous Materials. 2021;(312):110759. https:// doi.org/10.1016/j.micromeso.2020.110759
29. Gavilan K. C., Pestov A. V., Garcia H. M., Yatluk Y., Roussy J., Guibal E. Mercury sorption on a thiocarbamoyl derivative of chitosan. Journal of Hazardous Materials. 2009;(165):415–426. https://doi.org/10.1016/j.jhazmat.2008.10.005
30. Sun C., Li C., Qu R., Zhang Y., Bingdong Z., Kuang Y. Syntheses of diethylenetriamine-bridged polysilsesquioxanes and their structure–adsorption properties for Hg(II) and Ag(I). Chemical Engineering Journal. 2014;(240):369–378. https://doi.org/10.1016/j.cej.2013.11.092
31. Vieira E. G., Soares I. V., Dias Filho N. L., da Silva N. C., Perujo S. D., Bastos A. C. [et al.]. Study on soluble heavy metals with preconcentration by using a new modified oligosilsesquioxane sorbent. Journal of Hazardous Materials. 2012;(237–238):215–222. https://doi.org/10.1016/j.jhazmat.2012.08.030
32. Shi J., Zhang L., Huo Z., Chen L. High stability amino-derived reversed-phase/anion-exchange mixed-mode phase based on polysilsesquioxane microspheres for simultaneous separation of compound drugs. Journal of Pharmaceutical and Biomedical Analysis. 2021;(203):114187. https://doi.org/10.1016/j.jpba.2021.114187
33. Yang T., Zhang L., Zhong L., Han X., Dong S., Li Y. Selective adsorption of Ag(I) ions with poly(vinyl alcohol) modified with thiourea (TU–PVA). Hydrometallurgy. 2018;(175):179–186. https://doi.org/10.1016/j.hydromet.2017.11.007
34. Zhang L., Zhao Y., Mu C., Zhang X. Selective adsorption for Ag (I) from wastewater by carbon-magnetic fly ash beads modified with polydopamine and thiourea. Sustainable Chemistry and Pharmacy. 2020;(17):100287. https://doi.org/10.1016/j.scp.2020.100287
35. Kholmogorova A. S., Fedoseeva E. A., Neudachina L. K., Osipova V. A., Pestov A. V. Influence of the structure of the aminoalkyl group in polysiloxane on the selectivity of its interaction with metal ions. Russian Journal of Applied Chemistry. 2021;(94):478–485. https://doi.org/10.1134/S1070427221040078
Review
For citations:
Melnik E.A., Sysolyatina A.A., Kholmogorova A.S., Neudachina L.K., Osipova V.A., Pestov A.V. Selective Sorption of Silver Ions from Aqueous Solutions Using Poly(N-thiocarbamoyl‑ 3-aminopropylsilsesquioxane). Measurement Standards. Reference Materials. 2022;18(2):57-71. (In Russ.) https://doi.org/10.20915/2077-177-2022-18-2-57-71

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).