Metrological Assurance of Gas Calorimeter and Wobbe Index Analyser
https://doi.org/10.20915/2687-0886-2021-17-2-19-32
Abstract
The paper describes research on metrological assurance of such measuring instruments as gas calorimeters and Wobbe index analysers. The purpose of the performed research is development of reference materials for gases with certified value of net volume-basis calorific value traceable to Russian state primary standard. Input set of candidate gases is hydrogen, methane, ethane and propane, as well as the target uncertainty of lower volumetric combustion energy value equal to 0,3 % – both were selected basing on results of metrological characteristics analysis of calorimetric equipment. The certified value of lower volumetric combustion energy is traceable to the State Primary Standard of combustion energy, specific combustion energy and volumetric combustion energy units GET 16. The certified value of selected gases and the uncertainty of this value were estimated with usage of comparing calorimeters for the combustion of high- and low-calorie gases «USVG» and «USNG» included in GET 16. Results obtained during investigational study and reference materials characterisation confirmed the stated accuracy. The continuance in prospect may allow development of reference materials for gas imitating mixtures of natural and casing-head gases as well as include Wobbe index in the list of certified characteristics.
About the Authors
K. A. Mishina MishinaRussian Federation
Karina A. Mishina – engineer, D. I. Mendeleyev Institute for Metrology (VNIIM)
19 Moskovsky ave., St. Petersburg, 190005
E. N. Korchagina
Russian Federation
Elena N. Korchagina – PhD (Eng.), head of the laboratory for measurement standards and scientific research in the field of ombustion calorimetry and high-purity organic substances for metrological purposes, D. I. Mendeleyev Institute for Metrology (VNIIM)
19 Moskovsky ave., St. Petersburg, 190005
Ia. V. Kazartsev
Russian Federation
Yaroslav V. Kazartsev – researcher, D. I. Mendeleyev Institute for Metrology (VNIIM)
19 Moskovsky ave., St. Petersburg, 190005
References
1. Global gas report 2018. Available at: http://www.snam.it/export/sites/snam-rp/repository/file/gas_naturale/global-gas-report/global_gas_report_2018.pdf [accessed 23.10.2020].
2. Malek L, Hulteberg C. Measuring and ensuring the gas quality of the Swedish gas grid. Energiforsk; 2016, 38 p. Available at: https://portal.research.lu.se/portal/en/publications/measuring-and-ensuring-the-gas-quality-of-the-swedish-gas-grid(e8249698–1599–444f-992f-d6fb19a63b48).html [accessed 07.07.2019].
3. GOST 31369–2008 Gaz prirodnyj. Vychislenie teploty sgoranija, plotnosti, otnositel’noj plotnosti i chisla Vobbe na osnove komponentnogo sostava. Moscow: Standartinform; 2009, 54 p. (In Russ.).
4. ISO 15971:2008 Natural gas – Measurement of properties – Calorific value and Wobbe index. Available at: https://www.iso.org/standard/44867.html [accessed 23.10.2020].
5. Dörr H., Koturbash T., Kutecherov V. Review of impacts of gas qualities with regard to quality determination and energy metering of natural gas. Measurement Science and Technology. 2019;30(4); 022001. https://doi.org/10.1088/1361–6501/aaeef4
6. OIML R140: 2007 (E) Measuring systems for gaseous fuel. Available at: https://www.oiml.org/en/files/pdf_r/r140-e07.pdf [accessed 23.10.2020].
7. Villermaux C., Zarea M., Haloua F., Hay B., Filtz J.-R. Measurement of gas calorific value: a new frontier to be reached with an optimised reference gas calorimeter. In: 23rd World gas conference. Amsterdam, 2006. Available at: http://members.igu.org/html/wgc2006/pdf/paper/add12646.pdf [accessed 23.10.2020].
8. Jaeschke, M., Schmücker, A., Pramann, A., Ulbig P. GERG project: development and setup of a new combustion reference calorimeter for natural gases. International journal of thermophysics. 2007;28:220–244. https://doi.org/10.1007/s10765-007-0167-1
9. ISO 6976:2016 Natural gas – Calculation of calorific values, density, relative density and Wobbe indices from composition. Available at: https://www.iso.org/ru/standard/55842.html [accessed 23.10.2020].
10. Haloua F., Foulon E., Allard A., Hay B., Filtaz J.-R. Traceable measurement and uncertainty analysis of the gross calorific value of methane determined by isoperibolic Calorimetry. Metrologia. 2015;52(6):741–755. http://dx.doi.org/10.1088/0026–1394/52/6/741
11. Rauch J., Haloua F. Measurements of the Calorific Value of Methane with the New GERG Reference Calorimeters. Journal of Physics: Conference Series. 2018;1065(20). http://dx.doi.org/10.1088/1742–6596/1065/20/202007
12. Alexandrov Yu.I., Chunovkina A. G., Korchagina E. N. Revised value of the heat of combustion for high purity methane. In: Proceedings conference and exhibition on natural gas quality. Loughboroug, UK, 26–28 November. NPL, 2002, p.7.
13. Perez-Sanz F.J., Sarge S.M, van der Veen A., Culleton L., Beaumont O., Haloua F. First experimental comparison of calorific value measurements of real biogas with reference and field calorimeters subjected to different standard methods. International journal of thermal sciences. 2019;135:72–82. https://doi.org/10.1016/j.ijthermalsci.2018.06.034
14. Kacur J., Kostur K. Indirect measurement of syngas calorific value. In: Proceedings of the 2015 16th international Carpathian control conference (ICCC). Szilvasvarad, Hungary, 27–30 May, 2015. 229–234 pp. https://doi.org/10.1109/CarpathianCC.2015.7145079.
15. Rauch J., Haloua F. Calorific value of biomethane: Comparative measurements using reference gas calorimeters value. Journal of Physics: Conference Series. 2018;1065(20). http://dx.doi.org/10.1088/1742–6596/1065/20/202007
16. Tsochatzidis N. A., Karantanas E. Assessment of calorific value at a gas transmission network. Journal of natural gas science and engineering. 2012;9:45–50. https://doi.org/10.1016/j.jngse.2012.05.009.
17. Haloua F., Foulon E., El-Harti E., Sarge S. M., Rauch J., Neagu M., Brown A. S., Tuma D. Comparison of traceable methods for determining the calorific value of non-conventional fuel gases. International journal of thermal sciences. 2016;100:438–447. https://doi.org/10.1016/j.ijthermalsci.2015.10.020
18. Ulbig P., Hoburg D. Determination of the calorific value of natural gas by different methods. Thermochimica Acta. 2002;382(1–2):37– 35. https://doi.org/10.1016/S0040–6031(01)00732-8
19. ISO Guide 35:2017 Reference materials – Guidance for characterization and assessment of homogeneity and stability. Available at: https://www.iso.org/standard/60281.html
20. GSSSD195–01 Metan zhidkij i gazoobraznyj. Termodinamicheskie svojstva, kojefficienty dinamicheskoj vjazkosti i teploprovodnosti pri temperaturah 91…700 K i davlenijah 0,1…100 MPa. Moscow: Standartinform; 2008, 31 p. (In Russ.).
21. GSSSD196–01 Tablicy standartnyh spravochnyh dannyh. Jetan zhidkij i gazoobraznyj. Termodinamicheskie svojstva, kojefficienty dinamicheskoj vjazkosti i teploprovodnosti pri temperaturah 91…625 K i davlenijah 0,1…70 MPa. Moscow: Standartinform; 2008, 36 p. (In Russ.).
22. GSSSD197–01 Tablicy standartnyh spravochnyh dannyh. Propan zhidkij i gazoobraznyj. Termodinamicheskie svojstva, kojefficienty dinamicheskoj vjazkosti i teploprovodnosti pri temperaturah 86…700 K i davlenijah 0,1…100 MPa. Moscow: Standartinform; 2008, 38 p. (In Russ.)
Review
For citations:
Mishina K.A., Korchagina E.N., Kazartsev I.V. Metrological Assurance of Gas Calorimeter and Wobbe Index Analyser. Measurement Standards. Reference Materials. 2021;17(2):19-32. (In Russ.) https://doi.org/10.20915/2687-0886-2021-17-2-19-32

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).