Стандартные образцы для градуировки анализатора водорода при высокой концентрации
https://doi.org/10.20915/2077-1177-2022-18-3-29-40
Аннотация
В данном исследовании рассматриваются вопросы повышения точности при измерении высоких концентраций водорода при разработке материалов-накопителей в водородной энергетике. Цель исследования – разработка стандартных образцов для градуировки анализаторов водорода при высоких концентрациях. Проанализированы основные методы определения содержания водорода в материалах, установлено, что экстракционный метод в среде инертного газа нашел наиболее широкое применение. Отмечена необходимость градуировки анализаторов по стандартным образцам с высокой концентрацией водорода. Разработаны стандартные образцы из титанового сплава ВТ-1-0 с концентрацией водорода до (4,0±0,1) масс.%. Подобраны оптимальные параметры проведения анализа. На примере анализатора водорода RHEN602 (LECO, США) проведена градуировка по разработанным стандартным образцам с получением градуировочной зависимости. Оценена надежность полученной градуировочной прямой с использованием стехиометрического гидрида циркония. Доверительный интервал полученной градуировочной прямой составил ±10 %. Установлено, что проведение градуировки по разработанным образцам позволяет проводить анализ материалов с содержанием водорода от 0,5 до 4,0 масс.%. Практическая значимость исследования заключается в разработке стандартных образцов, которые могут быть применены для проведения градуировки анализаторов водорода, работающих по принципу плавления в среде инертного газа, при высокой концентрации водорода.
Ключевые слова
Об авторах
А. А. СпиридоноваРоссия
Спиридонова Алена Александровна – инженер по метрологии; аспирант Инженерной школы ядерных технологий
634050, г. Томск, проспект Ленина 30
В. Н. Кудияров
Россия
Кудияров Виктор Николаевич – канд. техн. наук, доцент отделения экспериментальной физики
634050, г. Томск, проспект Ленина 30
А. М. Лидер
Россия
Лидер Андрей Маркович – д. техн. наук, профессор, заведующий кафедрой – руководитель отделения на правах кафедры отделения экспериментальной физики
634050, г. Томск, пр. Ленина, 30
Список литературы
1. Borzenko V., Eronin A. The use of air as heating agent in hydrogen metal hydride storage coupled with PEM fuel cell // International Journal of Hydrogen Energy. 2016. Vol. 41, № 48. P. 23120–23124. https://doi.org/10.1016/j.ijhydene.2016.10.067
2. Optimized operation combining costs, efficiency and lifetime of a hybrid renewable energy system with energy storage by battery and hydrogen in grid-connected applications / P. García-Triviño [et al.] // International Journal of Hydrogen Energy. 2016. Vol. 41, № . 48. P. 23132–23144 p. https://doi.org/10.1016/j.ijhydene.2016.09.140
3. Ortiz A. L., Zaragoza M. J. M., Collins-Martínez V. Hydrogen production research in Mexico: A review // International Journal of Hydrogen Energy. 2016. Vol. 41, № 48. P. 23363–23379. https://doi.org./10.1016/j.ijhydene.2016.07.004
4. A DFT study of hydrogen storage on surface (110) of Mg 1– x Al x (0d xd 0.1) / G. Ramírez-Dámaso [et al.] // International Journal of Hydrogen Energy. 2016. Vol. 41, № 48. P. 23388–23393. https://doi.org/10.1016/j.ijhydene.2016.08.202
5. Liu W., Aguey-Zinsou K. F. Hydrogen storage properties of in-situ stabilised magnesium nanoparticles generated by electroless reduction with alkali metals // International Journal of Hydrogen Energy. 2015. Vol. 40, № 47. P. 16948–16960. https://doi.org/10.1016/j.ijhydene.2015.07.020
6. Synthesis and properties of ZnO-HMD@ ZnO-Fe/Cu core-shell as advanced material for hydrogen storage / N. Bouazizi [et al.] // Journal of Colloid and Interface Science. 2017. Vol. 491 P. 89–97. https://doi.org/10.1016/j.jcis.2016.12.024
7. The new metal complex templated polyoxoborate (s)(POB (s)) structures. Synthesis, structural characterization, and hydrogen storage capacities / D. A. Köse [et al.] // Journal of Molecular Structure. 2017. Vol. 1134. P 806–813. https://doi.org/10.1016/j.molstruc.2017.01.010
8. Колачев Б. А., Шалин Р. Е., Ильин А. А. Сплавы-накопители водорода : Справочник. М. : Металлургия, 1995. 384 с.
9. Hydrogenation thermokinetics and activation behavior of non-stoichiometric Zr-based Laves alloys with enhanced hydrogen storage capacity / Y. Zhang [et al.] // Journal of Alloys and Compounds. 2017. Vol. 694. P. 300–308. https://doi.org/10.1016/j.jallcom.2016.10.021
10. Hydriding and dehydriding in air-exposed Mg Fe powder mixtures / K. Suárez-Alcántara [et al.] // International Journal of Hydrogen Energy. 2016. Vol. 41, № 48. P. 23380–23387. https://doi.org/10.1016/j.ijhydene.2016.06.242
11. Hydrogen storage properties of a Mg-La-Fe-H nano-composite prepared through reactive ball milling / X. Chen [et al.] // Journal of Alloys and Compounds. 2017. Vol. 701. P. 208–214. https://doi.org/10.1016/j.jallcom.2017.01.056
12. Hydrogen storage and hydrogen generation properties of CaMg 2-based alloys / M. Ma [et al.] // Journal of Alloys and Compounds. 2017. Vol. 691. P. 929–935. https://doi.org/10.1016/j.jallcom.2016.08.307
13. Mg–M–LiH alloys prepared by mechanical milling and their hydrogen storage characteristics / K. Suárez-Alcántara [et al.] // International Journal of Hydrogen Energy. 2015. Vol. 40, № 48. P. 17344–17353. https://doi.org/10.1016/j.ijhydene.2015.04.083
14. Metal aluminum amides for hydrogen storage–Crystal structure studies / S. Hino [et al.] // International Journal of Hydrogen Energy. 2015. Vol. 40, № 47. P. 16938–16947. https://doi.org/10.1016/J.IJHYDENE.2015.05.012
15. Tarasov B. P., Lototsky M. V., Yartys V. A. Problem of hydrogen storage and prospective uses of hydrides for hydrogen accumulation // Russian Chemical Journal. 2006. Vol. 50, № 6. P. 34–48. https://doi.org/10.1134/S1070363207040329
16. Kulik O. P., Chernyshev L. I. Hydrogen energy: storage and transportation of hydrogen (review). Preprint of NAS of Ukraine, Institute of Problems of Materials Science. I. N. Frantsevich. P. 67.
17. Pundt A., Kirchheim R. Hydrogen in metals: microstructural aspects // Annual Review of Materials Research. 2006. Vol. 36, № 1. P. 555–608. https://doi.org/10.1146/annurev.matsci.36.090804.094451
18. A critical review of mg-based hydrogen storage materials processed by equal channel angular pressing / L. Wang [et al.] // Metals. 2017. Vol. 7. № . 9. P. 324. https://doi.org/10.3390/met7090324
19. da Silva Dupim I., Ferreira Santos S., Huot J. Effect of cold rolling on the hydrogen desorption behavior of binary metal hydride powders under microwave irradiation // Metals. 2015. Vol. 5. № . 4. P. 2021–2033. https://doi.org/10.3390/met5042021
20. Гидриды интерметаллических соединений и сплавов, их свойства и применение в атомной технике / А. Н. Перевезенцев [и др.] // Физика элементарных частиц и атомного ядра. 1988. Т. 19, № 6. С. 1386–1439.
21. Материалы для хранения водорода: анализ тенденций развития на основе данных об информационных потоках / В. М. Ажаж [и др.] // Вопросы атомной науки и техники. Серия: Вакуум, чистые материалы, сверхпроводники. 2006. № 1. С. 145–152.
22. Microstructure and hydrogen storage properties of MgH 2–TiB2–SiC composites / I. Milanoviü [et al.] // Ceramics International. 2013. Vol. 39, № 4. P. 4399–4405. https://doi.org/10.1016/j.ceramint.2012.11.029
23. Fernandez A., Deprez E., Friedrichs O. A comparative study of the role of additive in the MgH 2 vs. the LiBH 4–MgH 2 hydrogen storage system // International journal of hydrogen energy. 2011. Vol. 36, № 6. P. 3932–3940. https://doi.org/10.1016/j.ijhydene.2010.12.112
24. Influence of particle size on electrochemical and gas-phase hydrogen storage in nanocrystalline Mg / O. Friedrichs [et al.] // Journal of Alloys and Compounds. 2008. Vol. 463, № 1. P. 539–545. https://doi.org/10.1016/j.jallcom.2007.09.085
25. Realistic simulation in a single stage hydrogen compressor based on AB2 alloys / F. Leardini [et al.] // International Journal of Hydrogen Energy. 2016. Vol. 41, № 23. P. 9780–9788. https://doi.org/10.1016/J.IJHYDENE.2016.01.125
26. Development of vanadium based hydrogen storage material: a review / S. Kumar [et al.] // Renewable and Sustainable Energy Reviews. 2017. Vol. 72. P. 791–800. https://doi.org/10.1016/j.rser.2017.01.063
27. Nanotechnology in Mg-based materials for hydrogen storage / H. Shao [et al.] // Nano Energy. 2012. Vol. 1, № 4. P. 590–601. https://doi.org/10.1016/J.NANOEN.2012.05.005
28. Hydrogen absorption behavior of Zr-based getter materials with Pd Ag coating against gaseous impurities / T. Zhang [et al.] // International Journal of Hydrogen Energy. 2016. Vol. 41, № 33. P. 14778–14787. https://doi.org/10.1016/j.ijhydene.2016.06.073
29. Tarnawski Z., Kim-Ngan N. T. H. Hydrogen storage characteristics of Ti–and V–based thin films // Journal of Science: Advanced Materials and Devices. 2016. Vol. 1, № 2. P. 141–146. https://doi.org/10.1016/j.jsamd.2016.05.003
30. Проценко О. М., Карачевцев Ф. Н., Механик Е. А. Опыт разработки методики измерения содержания водорода в титановых сплавах // Труды ВИАМ. 2014. № 12. С. 1–5. https://doi.org/10.18577/2307-6046-2014-0-12-8-8
31. Grigorovich K. V. New possibilities of modern methods for determination of gas-forming impurities in metals // Inorganic Materials. 2007. Vol. 73, № 1. P. 23–34. https://doi.org/10.1134/S0020168508140094
32. Hydrogen desorption from pure titanium with different concentration levels of hydrogen / Y. Furuya [et al.] // Journal of Alloys and Compounds. 2007. Vol. 446. P. 447–450. https://doi.org/10.1016/j.jallcom.2007.04.304
33. Hydrogen absorption and desorption in a duplex-annealed Ti-6Al-4V alloy during exposure to different hydrogen-containing environments / D. Eliezer [et al.] // Materials Science and Engineering: A. 2006. Vol. 433, № 1. P. 298–304. https://doi.org/10/1016/j.msea.2006.06.088
34. Tal-Gutelmacher E., Eliezer D., Abramov E. Thermal desorption spectroscopy (TDS) –Application in quantitative study of hydrogen evolution and trapping in crystalline and non-crystalline materials // Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. 2007. Vol. 445. P. 625–631. http://doi.org/10.1016/j.msea.2006.09.089
35. Von Zeppelin F., Haluška M., Hirscher M. Thermal desorption spectroscopy as a quantitative tool to determine the hydrogen content in solids // Thermochimica Acta. 2003. Vol. 404, № 1. P. 251–258. https://doi.org/10.1016/S0040–6031(03)00183-7
36. Hydride dissociation and hydrogen evolution behavior of electrochemically charged pure titanium / A. Takasaki [et al.] // Journal of Alloys and Compounds. 1995. Vol. 224, № 2. P. 269–273. https://doi.org/10.1016/0925–8388(95)01565-5
37. Titanium defect structure change after gas-phase hydrogenation at different temperatures and cooling rates / A. A. Mikhaylov [et. al.] //AIP Conference Proceedings. 2016. Vol. 1783. P. 020152. https://doi.org/10.1063/1.4966445
38. The role of surface oxides on hydrogen sorption kinetics in titanium thin films / E. Hadjixenophontos [et al.] // Applied Surface Science. 2018. Vol. 441. P. 324–330. https://doi.org/10/1016/j.apsusc.2018.02.044
39. Hydrogenation-induced microstructure changes in titanium / R. S. Laptev [et. al.] // Journal of Alloys and Compounds. 2015. Vol. 645. p. 193–195. https://doi.org/10.1016/j.jallcom.2014.12.257
40. Effect of hydrogen on the structural and phase state and defect structure of titanium alloy / E. N. Stepanova [et. al.] // AIP Conference Proceedings. 2016. Vol. 1772. P. 030016. https://doi.org/10.1063/1.4964554
41. Sakintuna B., Lamari-Darkrim F., Hirscher M. Metal hydride materials for solid hydrogen storage: a review // International Journal of Hydrogen Energy. 2007. Vol. 32. P. 1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022
42. Larionov V. V., Lider A. M., Laptev R. S. Control of changes in the defect structure of titanium saturated with hydrogen // IOP Conference Series: Materials Science and Engineering. 2016. Vol. 135, № 1. P. 012025. https://doi.org/10.1088/1757–899X/135/1/012025
43. Study of the structural, thermodynamic and cyclic effects of vanadium and titanium substitution in laves-phase AB2 hydrogen storage alloys / U. Ulmer [et al.] // International Journal of Hydrogen Energy. 2017. Vol. 42, № 31. P. 20103–20110. https://doi.org/10.1016/j.ijhydene.2017.06.137
44. Macin V., Christ H. J. Influence of hydride-induced microstructure modification on mechanical properties of metastable beta titanium alloy Ti 10V-2Fe-3Al // International Journal of Hydrogen Energy. 2015. Vol. 40, № 47. P. 16878–16891. https://doi.org/10.1016/j.ijhydene.2006.11.022
45. Terminal solid solubility determinations in the H–Ti system / P. Vizcaíno [et. al.] // International Journal of Hydrogen Energy. 2015. Vol. 40, № 47. P. 16928–16937. https://doi.org/10.1016/j.ijhydene.2015.06.167
46. Кудияров В. Н., Лидер А. М. Изучение процессов сорбции и десорбции водорода при помощи автоматизированного комплекса GAS REACTION CONTROLLER LP // Фундаментальные исследования. 2013. № 10–15. С. 3466–3471.
Рецензия
Для цитирования:
Спиридонова А.А., Кудияров В.Н., Лидер А.М. Стандартные образцы для градуировки анализатора водорода при высокой концентрации. Эталоны. Стандартные образцы. 2022;18(3):29-40. https://doi.org/10.20915/2077-1177-2022-18-3-29-40
For citation:
Spiridonova A.A., Kudiiarov V.N., Lider A.M. Development of Reference Materials for Calibration of the Hydrogen Analyzer at High Concentration. Measurement Standards. Reference Materials. 2022;18(3):29-40. (In Russ.) https://doi.org/10.20915/2077-1177-2022-18-3-29-40

Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).