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Аннотация: В статье проанализировано современное состояние и перспективы развития высоко-
температурной дилатометрии. Приведены основные определения и понятия. Рассмотрены основные 
типы дилатометров, использующих контактные (механические) и дистанционные (оптические) ме-
тоды измерений; описаны некоторые конкретные установки. Проанализированы ограничивающие 
факторы известных методов. Технический прогресс, продуцирующий материалы с новыми свойства-
ми, требует создания подходов для исследования характеристик и возможностей применения таких 
материалов, а также, возможно, прогнозирования направлений современного материаловедения. 
Проанализированы технические приемы, которые могут обеспечить дальнейший прогресс в технике 
высокотемпературной дилатометрии. Представленный обзор обращен к исследователям – ​метро-
логам, материаловедам, физикам, работающим в области дилатометрии, а также к специалистам, 
создателям средств измерений.
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Введение
Изучение теплового расширения – ​один 

из старейших разделов науки о материалах, 
наряду с разделами о прочности и упруго-
сти. Как и многие другие фундаментальные 
области науки, наука о  тепловом расшире-
нии – ​дилатометрия – ​вносила и вносит вклад 
в развитие других областей знаний, например, 
о строении твердых тел, о фазовых переходах. 
Но и для решения многих практических вопро-
сов, таких как создание сложных узлов, меха-
низмов и машин, особенно тех, которые рабо-
тают в широком диапазоне температур, дила-
тометрия как источник информации о поведе-
нии материалов остается незаменимой. Именно 

поэтому, в силу ее универсальной востребо-
ванности, трудно указать конкретные облас-
ти ее применения: данные о тепловом расши-
рении необходимы во многих областях. Даже 
в такой, казалось бы, далекой от дилатометрии 
области, как твердотельная микроэлектроника, 
знания о тепловом расширении необходимы, 
чтобы в процессе функционирования струк-
тур не произошло отслаивания отличающих-
ся материалов [1].

Цель работы – ​систематизировать имею-
щийся отечественный и международный опыт 
измерений теплового расширения при высо-
ких температурах и дать возможность специ-
алистам, работающим в данной и смежных 



Рисунок подготовлен авторами по собственным данным / The 
figure is prepared by the authors using their own data

Рис. 1. Диаграмма Леннарда-Джонса: X – ​расстоя-
ние между частицами, отложено по горизонталь-

ной оси
Fig. 1. Lennard-Jones diagram: X is the distance 

between particles, plotted along the horizontal axis
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областях, ознакомиться с последними рабо-
тами в указанной области.

Термины и основные положения
Как правило, информация о тепловом рас-

ширении формулируется с использованием тер-
мина «температурный коэффициент линейно-
го расширения» (ТКЛР). В силу относительной 
малости этого коэффициента и в связи с техно-
логическим неудобством процесса измерения 
коэффициент объемного расширения твердых 
тел принимают равным утроенному коэффици-
енту линейного расширения (для анизотроп-
ных материалов это не так). Иногда тот же ко-
эффициент формулируют как коэффициент те-
плового расширения (КТР); в англоязычной 
технической литературе (CTE). Это синонимы. 
В данной статье принято обозначение ТКЛР.

Коэффициент теплового расширения опре-
деляется как отношение относительного удли-
нения (изделия, материала) к интервалу темпе-
ратуры, вызвавшему это удлинение, и обычно 
обозначается как альфа, α. В случае использо-
вания коэффициента объемного расширения 
используется следующая буква греческого ал-
фавита – ​бета, β.

Различают ТКЛР:
– дифференциальный α = (dL/L) / dT;       (1)
– интервальный α = (ΔL/L) / ΔT.	 (2)
В выражениях (1, 2) L, T – ​длина и абсолют-

ная температура соответственно. Остальные 
математические символы имеют общеприня-
тые значения. Для случая, когда исследуемый 
объект – ​твердое тело, использование частных 
производных в (1, 2) избыточно.

Геометрический смысл (1) – ​производная 
к зависимости длины от температуры при дан-
ной конкретной температуре. Геометрический 
смысл ТКЛР по определению (2) – ​наклон хор-
ды, пересекающей эту зависимость в двух тем-
пературных точках заданного интервала ΔT.

Коэффициент теплового расширения также 
и сам является функцией температуры. Более 
информативным способом представления ин-
формации о тепловом расширении (фактиче-
ски – ​об удлинении) является представление 
данных в виде полинома зависимости длины 
образца от температуры. В этом случае ТКЛР – ​
это коэффициент при первом члене разложения 
по малым приращениям температуры.

Частным, но наиболее важным случаем за-
висимости (2), является случай, когда началь-
ная температура измерения соответствует нор-
мальным климатическим условиям. Именно та-
кая информация, как правило, необходима для 
практических целей, например, для учета ис-
кривления рельсов, изменения конфигурации 
сопл реактивных двигателей и т. д.

Механизмы возникновения 
теплового расширения
Причины теплового расширения как фи-

зического явления к настоящему времени по-
няты достаточно хорошо. Корректно явле-
ние иллюстрируется с помощью диаграммы 
Леннарда-Джонса [2].

Атомы либо другие частицы, формирую-
щие твердое тело, испытывают как силы при-
тяжения между собой, так и силы отталкива-
ния. В материале эти частицы располагаются 
относительно друг друга на расстояниях, при 
которых эти силы уравновешиваются. Это со-
ответствует минимуму потенциальной энер-
гии на диаграмме Леннарда-Джонса (рис. 1). 
При повышении температуры атомы приоб-
ретают дополнительную кинетическую энер-
гию и переходят на более высокий уровень 
в потенциальной яме. При этом, поскольку 
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потенциальная яма асимметрична, среднее 
положение частицы смещается в сторону бо-
лее пологого края, что соответствует увели-
чению расстояния между соседними атомами.

В конкретных деталях явление теплового 
расширения существенно сложней. Из общих 
соображений следует только характер предель-
ных ветвей кривой Леннарда-Джонса. Сила со-
противления твердых тел сжатию экстремаль-
но возрастает при возрастании степени сжатия, 
и из этого следует резкий подъем кривой при 
малых расстояниях между атомами. При очень 
больших расстояниях атомы просто не взаи-
модействуют, и, следовательно, кривая долж-
на асимптотически стремиться к нулю. Но ка-
кую-нибудь конкретную информацию о форме 
кривой в области минимума для конкретного 
вещества можно извлечь только из результатов 
опытов. Именно поэтому дилатометрия была 
и остается источником информации о расши-
рении как для практики, так и для определе-
ния параметров взаимодействия атомов в кон-
кретных материалах.

Из общих свойств теплового расширения 
следует упомянуть характер температурной 
зависимости самого ТКЛР. В типичном слу-
чае коэффициент теплового расширения растет 
с температурой. На то есть фундаментальные 
причины. Как упоминалось, расширение обу-
словлено асимметрией потенциальных мини-
мумов, в которых находятся атомы. Грюнайзен 
показал, что второй коэффициент в полиноме, 
описывающем зависимость длины от темпера-
туры (коэффициент ангармонизма), позволяет 
связать ТКЛР и теплоемкость [3]:

v

v m

const
c V

α γβ= = ,                    (3)

где αV – ​изобарический ТКЛР; сV – ​удель-
ная теплоемкость; γ – ​параметр Грюнайзена; 
β = (∂V⁄∂P)T/V – ​коэффициент изотермической 
сжимаемости металла; Vm – ​молекулярный объ-
ем, который практически не зависит от темпе-
ратуры. В свою очередь, теплоемкость твердых 
тел растет с ростом температуры, что связано 
с ростом числа фононов и тем, что они зани-
мают все более энергичные уровни распреде-
ления [4], обусловливая рост ТКЛР при повы-
шении температуры.

Однако подчеркнем еще раз: понимание об-
щих закономерностей не обеспечивает необхо-
димой точной информацией о тепловом рас-
ширении даже в простейших случаях, это мо-
жет быть обеспечено только измерениями. Для 
конкретных материалов соотношение между 
ТКЛР и другими термодинамическими вели-
чинами исследуют экспериментально [5, 6]. Тем 
более это относится к особым случаям, когда 
вещество может испытывать фазовые перехо-
ды (магнитные, мартенситные, структурные), 
и особенно к случаям, которые прямо проти-
воречат модели Леннарда-Джонса – ​случаям 
отрицательного теплового расширения [7–11].

Экспериментальные методы 
измерений теплового расширения
Работы по изучению теплового расширения 

твердых тел известны, как минимум, с поза-
прошлого века, и за прошедшее время был на-
коплен значительный опыт создания установок 
и методик измерений ТКЛР различными мето-
дами. К настоящему времени дилатометры вы-
пускаются серийно многими производителями.

Тем не менее, можно выделить основные 
группы приборов, использующих сходные 
приемы и аппаратуру. Основной критерий от-
несения к той или иной группе – ​контактный 
или бесконтактный метод измерений. В боль-
шинстве случаев каждый конкретный метод 
может быть реализован как абсолютный или 
относительный с соответствующими измене-
ниями в аппаратуре.

Для определения коэффициента теплового 
расширения требуются измерения двух физи-
ческих величин – ​перемещения и температуры 
для образца материала, который подвергается 
соответствующему термическому циклу. В ли-
тературе содержатся сведения о многообра-
зии экспериментальных подходов. Некоторые 
из них являются абсолютными, другие – ​отно-
сительными методами, использующими эта-
лонный материал. О большом разнообразии 
подходов можно судить по различным мето-
дам, применяемым для измерений удлинения.

Механический метод, с помощью толка-
теля (рис. 2а) – ​наиболее простой метод изме-
рений. В этом методе образец находится в пе-
чи, торцы образца должны быть строго парал-
лельны и иметь высокую степень обработки 



              а                                                           б
Рисунок подготовлен авторами по собственным данным / 

The figure is prepared by the authors using their own data

Рис. 2. Общая схема дилатометра с толкателем: 
а – ​схема дилатометра с толкателем; б – ​схема от-
носительного дилатометра с двумя толкателями, 
где 1 – ​исследуемый образец (в рис. 2б он же – ​об-

разец сравнения), 2 – ​стержень толкателя, 
3 – ​устройство измерения относительного смеще-
ния, 4 – ​держатель образца, 5 – ​печь-нагреватель

Fig. 2. Principal diagram of a dilatometer with a push-
rod: a – ​diagram of a dilatometer with a push-rod; 

b – ​diagram of a relative dilatometer with two push-
rods, where 1 is the test sample (in Fig. 2b it is also the 
comparison sample), 2 is the push-rod, 3 is the relative 
displacement measuring device, 4 is the sample holder, 

5 is the heating furnace
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поверхностей. К торцам с некоторым усилием 
поджимаются толкатели, при помощи которых 
изменение линейных размеров образца при ко-
лебаниях температуры передается на высоко-
точные датчики перемещений. Измеренное уд-
линение является суммой растяжений образца 
и передающей системы.

Отсюда следует, что изначально необходи-
мо знать значение ТКЛР передающей систе-
мы, расширение которой должно быть доста-
точно изучено в различных интервалах рабо-
чей температуры. Для уменьшения искаже-
ния результата измерений систему крепления 
и толкатель стремятся делать из одинаково-
го материала или из материалов с близкими 

коэффициентами расширения. Тем не менее, 
измерения с толкателем всегда являются отно-
сительными, поскольку даже в случае одинако-
вого материала толкателя и системы крепления 
часть удлинения измерительного устройства 
остается некомпенсированной. Как следует 
из анализа точностных характеристик данно-
го метода измерений ТКЛР, погрешность из-
мерений ТКЛР – ​не меньше ± (6–8) %.

Для достижения бόльшей чувствительно-
сти метод с толкателем модифицируют: одно-
временно с исследуемым образцом в нагревае-
мую область помещают образец с известными 
свойствами, и расширение каждого из образ-
цов отдельным толкателем передается измери-
тельному устройству, измеряющему разность 
смещений концов толкателей (рис. 2б).

Область применения дилатометров с толка-
телями со стороны высоких температур огра-
ничена свойствами материала для толкателя.

Первыми и наиболее распространенными 
стали дилатометры с толкателями, у которых 
передающая система выполнена из плавлено-
го кварца. Обычно их используют до 800 °C. 
Их относительная точность тоже невысока, по-
рядка 1 · 10–7 K–1, и значительно уступает различ-
ным бесконтактным, например, оптическим ме-
тодам. Примеры реализации устройств с толка-
телями можно найти в [12–16]. Для работы при 
более высоких температурах передающую си-
стему в дилатометрах с толкателем необходи-
мо изготавливать из корунда (до 2 000 К) или 
из графита (до 3 000 К). Например, в [16] дилато-
метр с графитовыми нагревателями и толкате-
лем из изотропного графита использовался для 
измерений в диапазоне температуры до 2 400 °C.

Для измерения смещения края толкателя 
используются датчики различных типов. В на-
стоящее время большое количество датчиков 
с различными уровнями чувствительности вы-
пускается серийно. Тематика датчиков лежит 
за рамками настоящего обзора.

Рентгеновские и оптические методы – ​бо-
лее точные и универсальные бесконтактные 
методы измерений.

Рентгеновские методы используют диф-
ракцию рентгеновских лучей на кристалли-
ческой решетке. Такие методы не применимы:

– к некристаллическим/аморфным вещест- 
вам;



Рисунок подготовлен авторами по собственным данным / 
The figure is prepared by the authors using their own data

Рис. 3. Схема интерферометра Физо: 1 – ​исследу-
емый образец; 2 – ​интерференционные пласти-

ны (область локализации интерференции – ​ниж-
няя плоскость верхней пластины); 3 – ​оптическая 

система
Fig. 3. Fizeau interferometer diagram: 1 – ​sample under 
study; 2 – ​interference plates (interference localization 

region – ​lower plane of the upper plate); 3 – ​optical 
system
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– не применимы для измерений изменения 
размеров объектов в целом.

Получаемая из  таких измерений инфор-
мация локальна и, кроме того, не учитывает 
расширение за счет образования вакансий[2, 
17]. В работах с применением рентгеновских 
методов СКО относительного удлинения со-
ставляет порядка 1 · 10–5, а температуры 2–5 K. 
Примеры других работ, в которых использо-
валась рентгеновская дифракция, можно най-
ти в  [18–21]. Как разновидность рентгенов-
ских методов можно рассматривать дифрак-
цию электронов на кристаллической решет-
ке [22]. Далее в работе данная группа методов 
не рассматривается в силу их специфичности 
и не универсальности.

Оптические методы существенно более 
распространены, их удобно разделить на ин-
терференционные и компараторные.

Интерференционные методы различают 
по  типу использованного интерферометра. 
В большинстве случаев установка строится 
по типу интерферометра Физо (Fizeau) (рис. 3).

Дилатометры, построенные по этой схеме, 
описаны в [23–26]. Достигаемая точность опре-
деления ТКЛР в установках такого типа поряд-
ка 0,5 · 10–8 K–1 Естественным пределом возмож-
ности использования подобной установки в об-
ласти высоких температур является темпера-
тура плавления оптических элементов (строго 
говоря, температура размягчения, при которой 
оптические элементы начинают терять форму).

Для наиболее высокотемпературного опти-
ческого материала – ​сапфира с температурой 
плавления 2 100 K – ​предел рабочих темпера-
тур составляет около 1 800 K [27].

Чувствительность, достигаемая в дилатоме-
трах, использующих явление интерференции, 
фундаментально ограничена точностью, с ко-
торой можно определить сдвиг интерференци-
онной картины. К настоящему времени наилуч-
шая достигнутая чувствительность по сдвигу 
составляет 2 · 10–3 полосы интерференционной 
картины. Такой результат получен за счет оп-
тимизированного алгоритма обработки изо-
бражения интерференционной картины [28].

В ряде работ Робертсона, Беннета [29, 30] 
для определения малых сдвигов применен ана-
лиз параметров поляризованного света. Такой 
подход исключает громоздкие вычисления. 

Сдвиг интерференционной картины при этом 
преобразуется во вращение плоскости поля-
ризации, которое детектируется с помощью 
анализаторов.

Такая методика была использована в рабо-
те Беннетта [30] в NPL. Свет исходного источ-
ника разделяется призмой на два пучка, один 
из которых был направлен на полированную 
поверхность образца, а другой – ​на отражаю-
щее основание, на котором находился образец. 
Угловой отражатель позволял каждому лучу 
перед повторным объединением двух лучей 
пройти два прохода на соответствующее рас-
стояние. Разность путей двух ортогонально 
линейно поляризованных лучей после их со-
вмещения преобразовывалась в угол поворо-
та поляризации результирующего луча. Таким 
образом, измерения удлинения сводится к из-
мерениям параметров поляризации выходя-
щего света.
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В статье Беннетта описаны измерения 
расширения в диапазоне температуры от 0 
до 500 °C для различных материалов. Как сви-
детельство высокой точности этого метода, ко-
эффициент расширения плавленого кремнезе-
ма (порядка 0,5 · 10–6 K–1) может быть определен 
с погрешностью около 1 % в диапазоне темпера-
тур 50 К для образца толщиной 50 мм. Этот ме-
тод, разработанный Беннеттом, включен (наря-
ду с методом Физо) в стандарт ASTM E289–99 1.

Примеры современных работ с применени-
ем интерферометрических методов при повы-
шенных температурах приведены ниже.

Ойкава и соавторы [31] использовали моди-
фицированный интерферометр Майкельсона 
для изучения расширения кварца до 700 °C. 
В частности, здесь используется двойной путь 
прохождения He-Ne лазерного луча, дважды 
отраженного от  каждого зеркала. Образец 
длиной 10–15 мм и диаметром 4–7 мм с за-
кругленными концами нагревали в печи при 
температуре 2 °C мин–1. Температуру измеря-
ли с помощью термопары, расположенной ря-
дом с образцом (система была предваритель-
но откалибрована с помощью термопары, на-
ходящейся в контакте с фиктивным образцом). 
Разрешение составило 2 нм, точность – ​20 нм.

Масуда и соавторы [32] оценили чувстви-
тельность в 6 нм (1/100 длины волны He-Ne 
лазера) для измерений расширения корунда 
до 727 °C. Их методика заключалась в форми-
ровании фигуры Лиссажу из сигналов от го-
ризонтальных и вертикальных поляризован-
ных лучей, которые изначально были ортого-
нальны по фазе.

Для устранения любых незначительных 
изменений длины волны лазерного излуче-
ния, используемого для интерферометрии, 
Эскалона и Рози [33] предложили метод не-
прерывной волновой интерферометрии с ча-
стотной модуляцией (FMCW) для измерений 
теплового расширения. В дополнение к основ-
ному интерферометру для измерений расши-
рения образца в этом методе также использу-
ется второй интерферометр, на пути которо-
го нет образца, и, таким образом, он действу-
ет как эталонное устройство. Использование 

1 ASTM E289–99 Standard test method for linear 
thermal expansion of rigid solids with interferometry.

интерферометрии при более высоких темпе-
ратурах приводит к многочисленным пробле-
мам, включая воздействие излучаемого образ-
цом яркого света и износ оптической отража-
ющей поверхности со временем.

В  [32] описана специальная технология 
импульсного нагрева. Трубчатые образцы на-
гревались импульсом электрического тока 
продолжительностью менее одной секунды. 
Температура контролировалась с помощью пи-
рометра, а расширение по диаметру трубки ре-
гистрировалось с помощью модифицирован-
ного интерферометра Майкельсона. Лазерный 
луч отражался от противоположных сторон об-
разца перед повторным объединением с эта-
лонным лучом. При использовании этого ме-
тода были получены результаты термического 
расширения ниобия, молибдена и тантала вы-
ше 2 500 °C, а вольфрама – ​до 3 300 °C.

В работе [34] авторами предложен метод бы-
стрых интерференционных измерений совме-
стимый с импульсным нагревом.

Компараторный и  варианты методов 
на его основе – ​наиболее перспективные ме-
тоды. При компараторном методе положения 
торцов образца, находящегося в печи, фикси-
руются дистанционно оптическими методами. 
Измерительная установка при этом находит-
ся при нормальных климатических условиях. 
Примером может служить высокотемператур-
ный дилатометр ВНИИМ [35], позволяющий 
проводить измерения ТКЛР в диапазоне тем-
ператур от 1 000 до 3 000 К. В основу функци-
онирования этого дилатометра положен метод 
измерений удлинения, идеологически близкий 
к классическим компараторным методам. Для 
измерений температуры применяется пирометр, 
а для измерений удлинения – ​оптико-электрон-
ная измерительная система из двух параллель-
но направленных оптических каналов наблю-
дения, каждый из которых состоит из объек-
тива и устройства считывания изображения. 
Зарегистрированное измерительной системой 
смещение торцов образца (или меток на образ-
це) пересчитывается в удлинение компьютер-
ной системой в реальном времени. Расширенная 
неопределенность измерений ТКЛР на установ-
ке ВНИИМ составляет 0,5–0,8 % (в зависимос-
ти от температурного диапазона и от значений 
ТКЛР измеряемого образца).
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Тем не менее, большинство исследований 
ограничено по температуре величиной поряд-
ка 1 500–2 000 К [36, 37].

Методы измерений температуры при зна-
чениях выше 1 700 °C достаточно хорошо от-
работаны и  стандартны. В  существующих 
дилатометрах данного температурного ди-
апазона измерений температуры произво-
дят бесконтактным способом с помощью оп-
тических пирометров (в данной работе этот 
аспект высокотемпературной дилатометрии 
не рассматривается).

Факторы, ограничивающие 
возможности измерений 
при высоких температурах, 
и пути их преодоления
Значительные трудности в области темпе-

ратур выше 600 °C связаны со свечением об-
разцов. Как было отмечено выше, измерения 
температуры и удлинения в этой области тем-
ператур возможны почти исключительно бес-
контактными, преимущественно оптическими 
методами. Поэтому собственное свечение об-
разца и окружающих его объектов представ-
ляет существенную трудность при проведе-
нии измерений, потому что и непосредственно-
му наблюдателю-измерителю, и фотоприемни-
кам крайне затруднительно выделить полезный 
сигнал на фоне паразитной засветки.

Преодоление этого ограничивающего фак-
тора возможно различными путями. В прин-
ципе, было бы полезным использование источ-
ника света с более короткой длиной волны – ​
синей или зеленой. Поскольку основное све-
чение нагретых тел лежит в красно-желтой 
области спектра, это бы позволило лучше вы-
делять сигнал на фоне паразитного свечения. 
Но необходимо учитывать следующее обсто-
ятельство: источник должен быть достаточ-
но интенсивным, хорошо коллимируемым, 
со стабильной и точно известной длиной вол-
ны. В настоящее время из источников, суще-
ствующих серийно, всем этим параметрам од-
новременно удовлетворяют только стабили-
зированные гелиевые лазеры с длиной волны 
632,81 нм, поэтому предложенное выше реше-
ние пока нереализуемо.

Другим, также чисто оптическим спосо-
бом улучшения отношения полезного сигнала 

к фоновому было бы применение интерферен-
ционных фильтров. Ширина спектральной ли-
нии лазерного излучения мала. В случае ла-
зера, длина волны которого стабилизирована 
до 5–6-го знаков, ширина линии лазера соста-
вит десятые-сотые доли ангстрема. При ис-
пользовании интерференционного фильтра 
с шириной пропускания порядка 10 ангстрем 
возможно практически полное подавление па-
разитного излучения по сравнению с полезным 
сигналом. Такое решение применимо и было бы 
эффективным (а) в случае использования мно-
гоканального фотоприемника, регистрирую-
щего изображение; (б) в случае простого при-
емника интенсивности и даже при визуальной 
регистрации.

Еще одно техническое решение, не являю-
щееся чисто оптическим, заключается в при-
менении модуляции интенсивности луча лазе-
ра, используемого для измерений. Достаточно 
простым и эффективным является использова-
ние механического прерывателя света (chopper). 
Такое решение электронной регистрации спо-
собно повысить отношение сигнал/шум в ре-
гистрирующей системе на несколько порядков 
(1–2 порядка). Необходимо при этом учитывать, 
что подобное техническое решение будет бес-
полезным в случае визуальной регистрации, 
а также потребует более сложной программной 
обработки сигнала при использовании много-
канальных фотоприемников.

Высокотемпературные установки неизбежно 
представляют комплекс приборов и устройств, 
имеющих разную температуру, но расположен-
ных достаточно компактно. Измерительные 
блоки могут испытывать влияние нагрева со-
седних узлов, что делает возможным трудно-
прогнозируемый уход параметров установки 
в целом. Это вызывает необходимость преду-
смотреть специальные методы калибровки, до-
ступные непосредственно в ходе измеритель-
ного эксперимента.

В высокотемпературном дилатометре 
ВНИИМ для учета теплового расширения эле-
ментов измерительной системы под действием 
излучения печи внутри системы размещается 
репер. Репер представляет собой микрометри-
ческую линейку, за которой расположен отклю-
чаемый источник подсветки. Изображение ре-
пера вводится в оптический канал при помощи 
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системы светоделителей. Переключение изме-
рительной системы на измерения репера осу-
ществляется без каких-либо механических дви-
жений – ​простым включением осветителя ре-
пера, изображение которого заранее (до вклю-
чения освещения) совмещено с измерительной 
системой.

Заключение
Изучение теплового расширения материа-

лов при высоких температурах – ​актуальный 
раздел термомеханики. К настоящему време-
ни уже в нескольких установках в мире до-
стигнут верхний предел диапазона темпера-
тур – ​около 3 000 °C и точность в измерени-
ях ТКЛР – ​порядка долей процента. В то же 
время появились сообщения о том, что разра-
ботаны материалы, работающие при темпера-
турах до 5 000 °C. Очевидно, что возможнос-
ти измерительных устройств должны соответ-
ствовать и желательно даже опережать разви-
тие технологий.

В статье также рассмотрены технические 
приемы, которые могут обеспечить повыше-
ние точности измерений при высоких темпе-
ратурах. В целом, анализ свидетельствует, что 
существуют значительные возможности улуч-
шения методик регистрации теплового расши-
рения при измерениях ТКЛР в области экстре-
мально высоких температур.

К сожалению, в научной литературе мало 
публикаций на близкие темы. Возможно, это 

обусловлено специфическими областями при-
менения подобных материалов. Данный обзор 
частично восполняет этот пробел.
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